
Available

CAV
Evaluation

Artifact

On the Complexity of Checking Mixed Isolation
Levels for SQL Transactions

Ahmed Bouajjani1 , Constantin Enea2 , and Enrique Román-Calvo1

1 Université Paris Cité, CNRS, IRIF
{abou, calvo}@irif.fr

2 LIX, École Polytechnique, CNRS and
Institut Polytechnique de Paris
cenea@lix.polytechnique.fr

Abstract. Concurrent accesses to databases are typically grouped in
transactions which define units of work that should be isolated from other
concurrent computations and resilient to failures. Modern databases pro-
vide different levels of isolation for transactions that correspond to differ-
ent trade-offs between consistency and throughput. Quite often, an ap-
plication can use transactions with different isolation levels at the same
time. In this work, we investigate the problem of testing isolation level
implementations in databases, i.e., checking whether a given execution
composed of multiple transactions adheres to the prescribed isolation
level semantics. We particularly focus on transactions formed of SQL
queries and the use of multiple isolation levels at the same time. We show
that many restrictions of this problem are NP-complete and provide an
algorithm which is exponential-time in the worst-case, polynomial-time
in relevant cases, and practically efficient.

1 Introduction

Concurrent accesses to databases are typically grouped in transactions which
define units of work that should be isolated from other concurrent computations
and resilient to failures. Modern databases provide different levels of isolation for
transactions with different trade-offs between consistency and throughput. The
strongest isolation level, Serializability [21], provides the illusion that transac-
tions are executed atomically one after another in a serial order. Serializability
incurs a high cost in throughput. For performance, databases provide weaker
isolation levels, e.g., Snapshot Isolation [6] or Read Committed [6].

The concurrency control protocols used in large-scale databases to implement
isolation levels are difficult to build and test. For instance, the black-box testing
framework Jepsen [19] found a remarkably large number of subtle problems in
many production databases.

In this work, we focus on testing the isolation level implementations in
databases, and more precisely, on the problem of checking whether a given exe-
cution adheres to the prescribed isolation level semantics. Inspired by scenarios
that arise in commercial software [22], we consider a quite generic version of the
problem where transactions are formed of SQL queries and multiple isolation

https://orcid.org/0000-0002-2060-3592
https://orcid.org/0000-0003-2727-8865
https://orcid.org/0009-0005-7539-2330

2 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

levels are used at the same time, i.e., each transaction is assigned a possibly
different isolation level (the survey in [22] found that 32% of the respondents
use such “heterogeneous” configurations). Previous work [21,7] studied the com-
plexity of the problem when transactions are formed of reads and writes on a
static set of keys (variables), and all transactions have the same isolation level.

As a first contribution, we introduce a formal semantics for executions with
SQL transactions and a range of isolation levels, including serializability, snap-
shot isolation, prefix consistency, and read committed. Dealing with SQL queries
is more challenging than classic reads and writes of a static set of keys (as as-
sumed in previous formalizations [11,7]). SQL insert and delete queries change
the set of locations at runtime and the set of locations returned by an SQL query
depends on their values (the values are restricted to satisfy WHERE clauses).

We define an abstract model for executions, called history, where every SQL
query that inspects the database (has a WHERE clause) is associated with a set of
SQL queries that wrote the inspected values. This relation is called a write-read
relation (also known as read-from). This is similar to associating reads to writes
in defining memory models. We consider two classes of histories depending on
the “completeness” of the write-read relation. To define a formal semantics of
isolation levels, we need a complete write-read relation in the sense that for
instance, an SQL select is associated with a write for every possible row (iden-
tified by its primary key) in the database, even if that row is not returned by
the select because it does not satisfy the WHERE clause. Not returning a row is an
observable effect that needs to be justified by the semantics. Such full histories
can not be constructed by interacting with the database in a black-box manner
(a desirable condition in testing) when only the outputs returned by queries
can be observed. Therefore, we introduce the class of client histories where the
write-read concerns only rows that are returned by a query. The consistency of
a client history is defined as the existence of an extension of the write-read to
a full history which satisfies the semantics. The semantics on full histories com-
bines axioms from previous work [7] in a way that is directed by SQL queries
that inspect the database and the isolation level of the transaction they belong
to. This axiomatic semantics is validated by showing that it is satisfied by a
standard operational semantics inspired by real implementations.

We study the complexity of checking if a full or client history is consistent, it
satisfies the prescribed isolation levels. This problem is more complex for client
histories, which record less dependencies and need to be extended to full ones.

For full histories, we show that the complexity of consistency checking
matches previous results in the reads and writes model when all transactions
have the same isolation level [7]: polynomial time for the so-called saturable
isolation levels, and NP-complete for stronger levels like Snapshot Isolation or
Serializability. The former is a new result that generalizes the work of [7] and
exposes the key ideas for achieving polynomial-time complexity, while the latter
is a consequence of the previous results.

We show that consistency checking becomes NP-complete for client histo-
ries even for saturable isolation levels. It remains NP-complete regardless of the

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 3

expressiveness of WHERE clauses (for this stronger result we define another class
of histories called partial-observation). The problem is NP-complete even if we
bound the number of sessions. In general, transactions are organized in ses-
sions [23], an abstraction of the sequence of transactions performed during the
execution of an application (the counterpart of threads in shared memory). This
case is interesting because it is polynomial-time in the read/write model [7].

As a counterpart to these negative results, we introduce an algorithm for
checking consistency of client histories which is exponential-time in the worst
case, but polynomial time in relevant cases. Given a client history as input, this
algorithm combines an enumeration of extensions towards a full history with a
search for a total commit order that satisfies the required axioms. The commit
order represents the order in which transactions are committed in the database
and it is an essential artifact for defining isolation levels. For efficiency, the
algorithm uses a non-trivial enumeration of extensions that are not necessarily
full but contain enough information to validate consistency. The search for a
commit order is a non-trivial generalization of an algorithm by Biswas et al. [7]
which concerned only serializability. This generalization applies to all practical
isolation levels and combinations thereof. We evaluate an implementation of this
algorithm on histories generated by PostgreSQL with a number of applications
from BenchBase [12], e.g., the TPC-C model of a store and a model of Twitter.
This evaluation shows that the algorithm is quite efficient in practice and scales
well to typical workloads used in testing databases.

To summarize, we provide the first results concerning the complexity of check-
ing the correctness of mixed isolation level implementations for SQL transac-
tions. We introduce a formal specification for such implementations, and a first
tool that can be used in testing their correctness.

2 Histories

2.1 Transactions

We model the database as a set of rows from an unbounded domain Rows. Each
row is associated to a unique (primary) key from a domain Keys, given by the
function key : Rows → Keys. We consider client programs accessing the database
from a number of parallel sessions, each session being a sequence of transactions
defined by the following grammar:

ι ∈ Iso a ∈ LVars R ∈ 2Rows p ∈ Rows→ {0, 1} U ∈ Keys→ Rows

Transaction ::= begin(ι);Body; commit

Body ::= Instr | Instr;Body

Instr ::= InstrDB | a := LExpr | if(LCond){Instr}
InstrDB ::= a := SELECT(p) | INSERT(R) | DELETE(p) | UPDATE(p, U) | abort

Each transaction is delimited by begin and commit instructions. The begin

instruction defines an isolation level ι for the current transaction. The set of
isolation levels Iso we consider in this work will be defined later. The body

4 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

contains standard SQL-like statements for accessing the database and standard
assignments and conditionals for local computation. Local computation uses
(transaction-)local variables from a set LVars. We use a, b, . . . to denote local
variables. Expressions and Boolean conditions over local variables are denoted
with LExpr and LCond, respectively.

Concerning database accesses (sometimes called queries), we consider a sim-
plified but representative subset of SQL: SELECT(p) returns the set of rows sat-
isfying the predicate p and the result is stored in a local variable a. INSERT(R)
inserts the set of rows R or updates them in case they already exist (this cor-
responds to INSERT ON CONFLICT DO UPDATE in PostgreSQL) , and DELETE(p)
deletes all the rows that satisfy p. Then, UPDATE(p, U) updates the rows satis-
fying p with values given by the map U, i.e., every row r in the database that
satisfies p is replaced with U(key(r)), and abort aborts the current transaction.
The predicate p corresponds to a WHERE clause in standard SQL.

2.2 Histories

We define a model of the interaction between a program and a database called
history which abstracts away the local computation in the program and the
internal behavior of the database. A history is a set of events representing the
database accesses in the execution grouped by transaction, along with some
relations between these events which explain the output of SELECT instructions.

An event is a tuple ⟨e, type⟩ where e is an identifier and type is one of begin,
commit, abort, SELECT, INSERT, DELETE and UPDATE. E denotes the set of events.
For an event e of type SELECT, DELETE, or UPDATE, we use WHERE(e) to denote
the predicate p and for an UPDATE event e, we use SET(e) to denote the map U.

We call read events the SELECT events that read the database to return a
set of rows, and the DELETE and UPDATE events that read the database checking
satisfaction of some predicate p. Similarly, we call write events the INSERT,
DELETE and UPDATE events that modify the database. We also say that an event
is of type end if it is either a commit or an abort event.

A transaction log (t, ιt, E, pot) is an identifier t, an isolation level identifier
ιt, and a finite set of events E along with a strict total order pot on E, called
program order (representing the order between instructions in the body of a
transaction). The set E of events in a transaction log t is denoted by events(t).
For simplicity, we may use the term transaction instead of transaction log.

Isolation levels differ in the values returned by read events which are not
preceded by a write on the same variable in the same transaction. We denote by
reads(t) the set of read events contained in t. Also, if t does not contain an abort

event, the set of write events in t is denoted by writes(t). If t contains an abort

event, then we define writes(t) to be empty. This is because the effect of aborted
transactions (its set of writes) should not be visible to other transactions. The
extension to sets of transaction logs is defined as usual.

To simplify the exposition we assume that for any given key x ∈ Keys, a
transaction does not modify (insert/delete/update) a row with key x more than

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 5

once. Otherwise, under all isolation levels, only the last among multiple updates
is observable in other transactions.

As expected, we assume that the minimal element of pot is a begin event, if
a commit or an abort event occurs, then it is maximal in pot, and a log cannot
contain both commit and abort. A transaction log without commit or abort

is called pending. Otherwise, it is complete. A complete transaction log with a
commit is committed and aborted otherwise.

A history contains a set of transaction logs (with distinct identifiers) ordered
by a (partial) session order so that represents the order between transactions in
the same session. It also includes a write-read relation wr which associates write
events with read events. The write events associated to a read implicitly define
the values observed (returned) by the read (read events do not include explicit
values). Let T be a set of transaction logs. For every key x ∈ Keys we consider
a write-read relation wrx ⊆ writes(T) × reads(T). The union of wrx for every
x ∈ Keys is denoted by wr. We extend the relations wr and wrx to pairs of
transactions by (t1, t2) ∈ wr, resp., (t1, t2) ∈ wrx, iff there exist events w in t1
and r in t2, t2 ̸= t1 s.t. (w, r) ∈ wr, resp., (w, r) ∈ wrx. Analogously, we extend wr
and wrx to tuples formed of a transaction (containing a write) and a read event.
We say that the transaction t1 is read by the transaction t2 when (t1, t2) ∈ wr.
The inverse of wrx is defined as usual and denoted by wr−1

x . We assume that
wr−1

x is a partial function and thus, use wr−1
x (e) to denote the write event w

such that (w, e) ∈ wrx. We also use wr−1
x (e) ↓ and wr−1

x (e) ↑ to say that there
exists a write w such that (w, e) ∈ wrx (resp. such write w does not exist).

To simplify the exposition, every history includes a distinguished transaction
init preceding all the other transactions in so and inserting a row for every x.
It represents the initial state and it is the only transaction that may insert as
value †x (indicating that initially, no row with key x is present).

Definition 1. A history (T, so,wr) is a set of transaction logs T along with
a strict partial session order so, and a write-read relation wrx ⊆ writes(T) ×
reads(T) for each x ∈ Keys s.t.

– the inverse of wrx is a partial function,
– so ∪ wr is acyclic (here we use the extension of wr to pairs of transactions),
– if (w, r) ∈ wrx, then valuewr(w, x) ̸= ⊥, where

valuewr(w, x) =

r if w = INSERT(R) ∧ r ∈ R ∧ key(r) = x
†x if w = DELETE(p) ∧ wr−1

x (w) ↓
∧ p(valuewr(wr

−1
x (w), x)) = 1

U(x) if w = UPDATE(p, U) ∧ wr−1
x (w) ↓

∧ p(valuewr(wr
−1
x (w), x)) = 1

⊥ otherwise

The function wr−1
x may be partial because some query may not read a key

x, e.g., if the corresponding row does not satisfy the query predicate.
The function valuewr(w, x) returns the row with key x written by the write

event w. If w is an INSERT, it returns the inserted row with key x. If w is an

6 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

UPDATE(λr : r ≥ 1, λr : −2)
t1

INSERT({x1 : 0, x2 : 1})
init

DELETE(λr : r ≤ 0)

t2
so wrx1,x2

sowrx2

wrx1

Fig. 1: An example of a history (isolation levels omitted for legibility). Arrows
represent so and wr relations. Transaction init defines the initial state: row 0
with key x1 and row 1 with key x2. Transaction t2 reads x1 and x2 from init and
deletes row with key x1 (the only row satisfying predicate λr : r ≤ 0 corresponds
to key x1). Transaction t1 reads x1 from t2 and x2 from init, and updates only
row with key x2 as this is the only row satisfying predicate λr : r ≥ 1.

UPDATE(p, U) event, it returns the value of U on key x if w reads a value for key
x that satisfies predicate p. If w is a DELETE(p), it returns the special value †x if
w reads a value for key x that satisfies p. This special value indicates that the
database does not contain a row with key x. In case no condition is satisfied,
valuewr(w, x) returns an undefined value ⊥. We assume that the special values
†x or ⊥ do not satisfy any predicate. Note that the recursion in the definition of
valuewr(w, x) terminates because wr is an acyclic relation.

Figure 1 shows an example of a history. For the UPDATE event w in t1,
valuewr(w, x1) = ⊥ because this event reads x1 from the DELETE event in t2;
while valuewr(w, x2) = −2 as it reads x2 from the INSERT event in init.

The set of transaction logs T in a history h = (T, so,wr) is denoted by tr(h)
and events(h) is the union of events(t) for every t ∈ T . For a history h and an
event e in h, tr(e) is the transaction t in h that contains e. We assume that each
event belongs to only one transaction. Also, writes(h) =

⋃
t∈tr(h) writes(t) and

reads(h) =
⋃

t∈tr(h) reads(t). We extend so to pairs of events by (e1, e2) ∈ so if
(tr(e1), tr(e2)) ∈ so. Also, po =

⋃
t∈T pot. We use h, h1, h2, . . . to range over

histories.
For a history h, we say that an event r reads x in h whenever wr−1

x (r) ↓.
Also, we say that an event w writes x in h, denoted by w writes x, whenever
valuewr(w, x) ̸= ⊥ and the transaction of w is not aborted. We extend the
function value to transactions: valuewr(t, x) equals valuewr(w, x), where w is
the maximal event in pot that writes x.

2.3 Classes of histories

We define two classes of histories: (1) full histories which are required to define
the semantics of isolation levels and (2) client histories which model what is
observable from interacting with a database as a black-box.

Full histories model the fact that every read query “inspects” an entire snap-
shot of the database in order to for instance, select rows satisfying some predi-
cate. Roughly, full histories contain a write-read dependency for every read and
key. There is an exception which concerns “local” reads. If a transaction modifies
a row with key x and then reads the same row, then it must always return the
value written in the transaction. This holds under all isolation levels. In such

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 7

UPDATE(λr : r ≥ 1, λr : −2)
t1

INSERT({x1 : 0, x2 : 1})
init

DELETE(λr : r ≤ 0)

t2
so wrx1

sowrx2

(a) Client history.

UPDATE(λr : r ≥ 1, λr : −2)
t1

INSERT({x1 : 0, x2 : 1})
init

DELETE(λr : r ≤ 0)

t2
wrx1 so wrx1

sowrx2

wrx2

(b) t2 observes x2 = −2.

UPDATE(λr : r ≥ 1, λr : −2)
t1

INSERT({x1 : 0, x2 : 1})
init

DELETE(λr : r ≤ 0)

t2
wrx1 so wrx2

sowrx1 wrx2

(c) t2 observes x2 = 1.

Fig. 2: Examples of a client history h and two possible extensions. The dashed
edge belongs only to the extensions. The first extension is not a witness of h as
t1 writes −2 on x2 and WHERE(t2)(−2) = 1.

a case, there would be no write-read dependency because these dependencies
model interference across different transactions. We say that a read r reads a
key x locally if it is preceded in the same transaction by a write w that writes x.

Definition 2. A full history (T, so,wr) is a history where wr−1
x (r) is defined for

all x and r, unless r reads x locally.

Client histories record less write-read dependencies compared to full histories,
which is formalized by the extends relation.

Definition 3. A history h = (T, so,wr) extends another history h = (T, so,wr)
if wr ⊆ wr. We denote it by h ⊆ h.

Definition 4. A client history h = (T, so,wr) is a history s.t. there is a full
history h = (T, so,wr) with h ⊆ h, and s.t for every x, if (w, r) ∈ wrx \wrx then
WHERE(r)(valuewr(w, x)) = 0. The history h′ is called a witness of h.

Compared to a witness full history, a client history may omit write-read
dependencies if the written values do not satisfy the predicate of the read query.
These values would not be observable when interacting with the database as a
black-box. This includes the case when the write is a DELETE (recall that the
special value †x indicating deleted rows falsifies every predicate by convention).
Figure 1 shows a full history as every query reads both x1 and x2. Figure 2a
shows a client history: transactions t1, t2 does not read x2 and x1 resp. Figure 2b
is an extension but not a witness while Figure 2c is indeed a witness of it.

3 Axiomatic Semantics With Different Isolation Levels

We define an axiomatic semantics on histories where transactions can be assigned
different isolation levels, which builds on the work of Biswas et al. [7].

8 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

3.1 Executions

An execution of a program is represented using a history with a set of transac-
tions T along with a total order co ⊆ T ×T called commit order. Intuitively, the
commit order represents the order in which transactions are committed in the
database.

Definition 5. An execution ξ = (h, co) is a history h = (T, so,wr) along with
a commit order co ⊆ T × T , such that transactions in the same session or that
are read are necessarily committed in the same order: so ∪ wr ⊆ co. ξ is called
an execution of h.

For a transaction t, we use t ∈ ξ to denote the fact that t ∈ T . Analogously,
for an event e, we use e ∈ ξ to denote that e ∈ t and t ∈ ξ. The extension of
a commit order to pairs of events or pairs of transactions and events is done in
the obvious way.

3.2 Isolation Levels

Isolation levels enforce restrictions on the commit order in an execution that
depend on the session order so and the write-read relation wr. An isolation level
ι for a transaction t is a set of constraints called axioms. Intuitively, an axiom
states that a read event r ∈ t reads key x from transaction t1 if t1 is the latest
transaction that writes x which is “visible” to r – latest refers to the commit
order co. Formally, an axiom a is a predicate of the following form:

a(r) := ∀x, t1, t2.t1 ̸= t2 ∧ (t1, r) ∈ wrx ∧ t2 writes x ∧ visa(t2, r, x) ⇒ (t2, t1) ∈ co
(1)

where r is a read event from t.
The visibility relation of a visa is described by a formula of the form:

visa(τ0, τk+1, x) : ∃τ1, . . . , τk.
k+1∧
i=1

(τi−1, τi) ∈ Reli ∧WrConsa(τ0, . . . , τk+1, x) (2)

with each Reli is defined by the grammar:

Rel ::= po | so |wr | co |Rel ∪ Rel |Rel;Rel |Rel+ |Rel∗ (3)

This formula states that τ0 (which is t2 in Eq.1) is connected to τk+1 (which is
r in Eq.1) by a path of dependencies that go through some intermediate transac-
tions or events τ1, . . . , τk. Every relation used in such a path is described based on
po, so,wr and co using union ∪, composition of relations ;, and transitive closure
operators. Finally, extra requirements on the intermediate transactions s.t. writ-
ing a different key y ̸= x are encapsulated in the predicate WrConsa(τ0, . . . , τk, x).

Each axiom a uses a specific visibility relation denoted by visa. vis(ι) denotes
the set of visibility relations used in axioms defining an isolation level ι.

Figure 3 shows two axioms which correspond to their homonymous isolation
levels [7]: Read Committed (RC) and Serializability (SER). SER states that t2 is

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 9

t1

t2

writes x

r

r′

wrx

so ∪ wr

po∗
co

∀x∀t1∀t2. t1 ̸= t2 ∧
(t1, r) ∈ wrx ∧
t2 writes x ∧
(t2, r) ∈ (so ∪ wr); po∗

=⇒ (t2, t1) ∈ co

(a) Read Committed

t1 r

t2

writes x

wrx

so ∪ wr

co

∀x∀t1∀t2. t1 ̸= t2 ∧
(t1, tr(r)) ∈ wrx ∧
t2 writes x ∧
(t2, tr(r)) ∈ so ∪ wr

=⇒ (t2, t1) ∈ co

(b) Read Atomic

t1 r

t2

writes x

wrx

co

co

∀x∀t1∀t2. t1 ̸= t2 ∧
(t1, r) ∈ wrx ∧
t2 writes x ∧
(t2, r) ∈ co

=⇒ (t2, t1) ∈ co

(c) Serializability

t1 r

t2

writes x

t4

wrx

co∗

(so ∪ wr)co

∀x∀t1∀t2. t1 ̸= t2 ∧ (t1, r) ∈ wrx ∧
t2 writes x ∧
(t2, r) ∈ co∗; (so ∪ wr)

=⇒ (t2, t1) ∈ co

(d) Prefix

t1 r writes y

t2

writes x

t4

writes y

wrx

co∗

coco

∀x∀t1∀t2. t1 ̸= t2 ∧ (t1, r) ∈ wrx ∧
t2 writes x ∧ t4, tr(r) write y ∧
(t2, t4) ∈ co∗ ∧ (t4, r) ∈ co

=⇒ (t2, t1) ∈ co

(e) Conflict

Fig. 3: Axioms defining RC, RA, SER, PC and SI isolations levels respectively.
Visibility relations are “inlined” to match the definitions in [7].

visible to r if t2 commits before r, while RC states that t2 is visible to r if either
(t2, r) ∈ so or if there exists a previous event r′ in tr(r) that reads x from t2.
Similarly, Read Atomic (RA) and Prefix Consistency (PC) are defined using their
homonymous axioms while Snapshot Isolation (SI) is defined as a conjunction
of both Prefix and Conflict.

The isolation configuration of a history is a mapping iso(h) : T → Iso associ-
ating to each transaction an isolation level identifier from a set Iso.

Whenever every transaction in a history has the same isolation level ι, the
isolation configuration of that history is denoted simply by ι.

Note that SER is stronger than RC: every transaction visible to a read r
according to RC is also visible to r according to SER. This means SER imposes more
constraints for transaction t1 to be read by r than RC. In general, for two isolation
configurations I1 and I2, I1 is stronger than I2 when for every transaction t, I1(t)
is stronger than I2(t) (i.e., whenever I1(t) holds in an execution ξ, I2(t) also holds
in ξ). The weaker than relationship is defined similarly.

Given a history h with isolation configuration iso(h), h is called consistent
when there exists an execution ξ of h such that for all transactions t in ξ,
the axioms in iso(h)(t) are satisfied in ξ (the interpretation of an axiom over
an execution is defined as expected). For example, let h be the full history in
Figure 2c. If both t1, t2’s isolation are SER, then h is not consistent, i.e., every
execution ξ = (h, co) violates the corresponding axioms. Assume for instance,
that (t1, t2) ∈ co. Then, by axiom SER, as (init, t2) ∈ wrx1

and t1 writes x1, we

10 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

get that (t1, init) ∈ co, which is impossible as (init, t1) ∈ so ⊆ co. However,
if the isolation configuration is weaker (for example iso(h)(t2) = RC), then the
history is consistent using init <co t1 <co t2 as commit order.

Definition 6. A full history h = (T, so,wr) with isolation configuration iso(h) is
consistent iff there is an execution ξ of h s.t.

∧
t∈T,r∈reads(t),a∈iso(h)(t) a(r) holds

in ξ; ξ is called a consistent execution of h.

The notion of consistency on full histories is extended to client histories.

Definition 7. A client history h = (T, so,wr) with isolation configuration iso(h)
is consistent iff there is a full history h with the same isolation configuration
which is a witness of h and consistent; h is called a consistent witness of h.

In general, the witness of a client history may not be consistent. In particular,
there may exist several witnesses but no consistent witness.

3.3 Validation of the semantics

To justify the axiomatic semantics defined above, we define an operational se-
mantics inspired by real implementations and prove that every run of a program
can be translated into a consistent history. Every instruction is associated with
an increasing timestamp and it reads from a snapshot of the database defined
according to the isolation level of the enclosing transaction. At the end of the
transaction we evaluate if the transaction can be committed or not. We assume
that a transaction can abort only if explicitly stated in the program. We model
an optimistic approach where if a transaction cannot commit, the run blocks
(modelling unexpected aborts). We focus on three of the most used isolation
levels: SER, SI, RC. Other isolation levels can be handled in a similar manner.
For each run ρ we extract a full history history(ρ). We show by induction that
history(ρ) is consistent at every step.

Theorem 1. For every run ρ, history(ρ) is consistent.

4 Complexity of Checking Consistency

4.1 Saturation and Boundedness

We investigate the complexity of checking if a history is consistent. Our ax-
iomatic framework characterize isolation levels as a conjunction of axioms as in
Equation (1). However, some isolation levels impose stronger constraints than
others. For studying the complexity of checking consistency, we classify them in
two categories, saturable or not. An isolation level is saturable if its visibility rela-
tions are defined without using the co relation (i.e. the grammar in Equation (3)
omits the co relation). Otherwise, we say that the isolation level is non-saturable.
For example, RC and RA are saturable while PC, SI and SER are not.

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 11

Algorithm 1 Extending an initial pco relation with necessary ordering con-
straints
1: function saturate(h = (T, so,wr), pco) ▷ pco must be transitive.
2: pcores ← pco
3: for all x ∈ Keys do
4: for all r ∈ reads(h), t2 ̸= tr(r) ∈ T s.t. t2 writes x and t2 ̸= tr(wr−1

x (r)) do
5: t1 ← tr(wr−1

x (r)) ▷ t1 is well defined as h is a full history.
6: for all v ∈ vis(iso(h)(tr(r))) do
7: if v(t2, r, x) then
8: pcores ← pcores ∪ {(t2, t1)}
9: return pcores

Algorithm 2 Checking saturable consistency
1: function checkSaturable(h = (T, so,wr))
2: if so ∪ wr is cyclic then return false

3: pco← saturate(h, (so ∪ wr)+)
4: return true if pco is acyclic, and false, otherwise

Definition 8. An isolation configuration iso(h) is saturable if for every transac-
tion t, iso(h)(t) is a saturable isolation level. Otherwise, iso(h) is non-saturable.

We say an isolation configuration iso(h) is bounded if there exists a fixed
k ∈ N s.t. for every transaction t, iso(h)(t) is defined as a conjunction of at
most k axioms that contain at most k quantifiers. For example, SER employs one
axiom and four quantifiers while SI employs two axioms, Prefix and Conflict, with
four and five quantifiers respectively. Any isolation configuration composed with
SER, SI, PC, RA and RC isolation levels is bounded. We assume in the following
that isolation configurations are bounded.

Checking consistency requires computing the valuewr function and thus, eval-
uating WHERE predicates. In the following, we assume that evaluating WHERE pred-
icates on a single row requires constant time.

4.2 Checking Consistency of Full Histories

Algorithm 2 computes necessary and sufficient conditions for the existence of a
consistent execution ξ = (h, co) for a history h with a saturable isolation con-
figuration. It calls saturate, defined in Algorithm 1, to compute a “partial ”
commit order relation pco that includes (so ∪ wr)+ and any other dependency
between transactions that can be deduced from the isolation configuration. A
consistent execution exists iff this partial commit order is acyclic. Algorithm 2
generalizes the results in [7] for full histories with heterogeneous saturable iso-
lation configurations.

Theorem 2. Checking consistency of full histories with bounded saturable iso-
lation configurations can be done in polynomial time.

12 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

For bounded non-saturable isolation configurations, checking if a history is
consistent is NP-complete as an immediate consequence of the results in [7].
These previous results apply to the particular case of transactions having the
same isolation level and being formed of classic read and write instructions on a
fixed set of variables. The latter can be simulated by SQL queries using WHERE

predicates for selecting rows based on their key being equal to some particular
value. For instance, SELECT(λr : key(r) = x) simulates a read of a “variable” x.

4.3 Checking Consistency of Client Histories

We show that going from full histories to client histories, the consistency checking
problem becomes NP-complete, independently of the isolation configurations.
Intuitively, NP-hardness comes from keys that are not included in outputs of
SQL queries. The justification for the consistency of omitting such rows can be
ambiguous, e.g., multiple values written to a row may not satisfy the predicate
of the WHERE clause, or multiple deletes can justify the absence of a row.

The width of a history width(h) is the maximum number of transactions
which are pairwise incomparable w.r.t. so. In a different context, previous
work [7] showed that bounding the width of a history (consider it to be a con-
stant) is a sufficient condition for obtaining polynomial-time consistency check-
ing algorithms. This is not true for client histories.

Theorem 3. Checking consistency of bounded-width client histories with
bounded isolation configuration stronger than RC and width(h) ≥ 3 is NP-
complete.

The proof of NP-hardness uses a reduction from 1-in-3 SAT which is inspired
by the work of Gibbons and Korach [16] (Theorem 2.7) concerning sequential
consistency for shared memory implementations. Our reduction is a non-trivial
extension because it has to deal with any weak isolation configuration stronger
than RC.

The proof of Theorem 3 relies on using non-trivial predicates in WHERE clauses.
We also prove that checking consistency of client histories is NP-complete irre-
spectively of the complexity of these predicates. This result uses another class
of histories, called partial-observation histories. These histories are a particular
class of client histories where events read all inserted keys, irrespectively of their
WHERE clauses (as if these clauses where true).

Definition 9. A partial observation history h = (T, so,wr) is a client history for
which there is a witness h = (T, so,wr) of h, s.t. for every x, if (w, r) ∈ wrx\wrx,
then w deletes x.

Theorem 4. Checking consistency of partial observation histories with bounded
isolation configurations stronger than RC is NP-complete.

The proof of NP-hardnessuses a novel reduction from 3 SAT. The main dif-
ficulty for obtaining consistent witnesses of partial observation histories is the
ambiguity of which delete event is responsible for each absent row.

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 13

Algorithm 3 Checking consistency of client histories
1: function checkConsistency(h = (T, so,wr))
2: let pco = FIX(λR : saturate(h,R))(so ∪ wr)+

3: let Eh = {(r, x) | r ∈ reads(h), x ∈ Keys.wr−1
x (r) ↑ and 1xr (pco) ̸= ∅}

4: let Xh = the set of mappings that map each (r, x)∈Eh to a member of 0rx(pco)
5: if pco is cyclic then return false
6: else if there exists (r, x) ∈ Eh such that 0rx(pco) = ∅ then return false
7: else if Eh = ∅ then return exploreConsistentPrefixes(h, ∅)
8: else
9: for all f ∈ Xh do

10: seen← ∅; h′ ← h
⊕

(r,x)∈Eh
wrx(f(r, x), r)

11: if exploreConsistentPrefixes(h′, ∅) then return true

12: return false

5 Effectively Checking Consistency of Client Histories

The result of Theorem 3 implicitly asks whether there exist conditions on the
histories for which checking consistency remains polynomial as in [7]. We describe
an algorithm for checking consistency of client histories and identify cases in
which it runs in polynomial time.

Consider a client history h = (T, so,wr) which is consistent. For every con-
sistent witness h = (T, so,wr) of h there exists a consistent execution of h,
ξ = (h, co). The commit order co contains (so ∪ wr)+ and any other order-
ing constraint derived from axioms by observing that (so ∪ wr)+ ⊆ co. More
generally, co includes all constraints generated by the least fixpoint of the func-
tion saturate defined in Algorithm 1 when starting from (so ∪ wr)+ as partial
commit order. This least fixpoint exists because saturate is monotonic. It is
computed as usual by iterating saturate until the output does not change. We
use FIX(λR : saturate(h,R))(so∪wr)+ to denote this least fixpoint. In general,
such a fixpoint computation is just an under-approximation of co, and it is not
enough for determining h’s consistency.

The algorithm we propose, described in Algorithm 3, exploits the partial
commit order pco obtained by such a fixpoint computation (line 2) for deter-
mining h’s consistency. For a read r, key x, we define 1rx(pco), resp., 0rx(pco), to
be the set of transactions that are not committed after tr(r) and which write a
value that satisfies, resp., does not satisfy, the predicate WHERE(r). The formal
description of both sets can be seen in Equation 4.

1rx(pco) = {t ∈ T | (tr(r), t) ̸∈ pco ∧ WHERE(r)(valuewr(t, x)) = 1}
0rx(pco) = {t ∈ T | (tr(r), t) ̸∈ pco ∧ WHERE(r)(valuewr(t, x)) = 0} (4)

The set 0rx(pco) can be used to identify extensions that are not witness of a
history. Let us consider the client history h depicted in Figure 4a. Observe that
t3 is not reading x1 and t5 is not reading x2. Table 4b describes all possible full
extensions h of h. An execution ξ = (h, co) is consistent if (t, r) ∈ wrx\wrx implies
WHERE(r)(valuewr(t, x)) = 0. This implies that extensions h1, h4, and h7, where

14 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

INSERT({x1 : 0, x2 : 0, x3 : 0, x4 : 0})
init

INSERT({x2 : −1, x3 : 1})
t1

INSERT({x1 : 2, x4 : −2})
t2

SELECT(λr : r < 0)
INSERT({x2 : −3})

t3

INSERT({x4 : 4})
t4

SELECT(λr : r ≥ 0)
INSERT({x1 : 5, x3 : −5})

t5

soso

soso

so

wrx3

wrx2

wrx1

wrx3

wrx4

wrx4

(a) A history where t3, t5 have PC and SER as
isolation levels respectively. The isolation levels
of the other transactions are unspecified.

History wr−1
x1

(t3) wr−1
x2

(t5)

h1 init init
h2 init t1
h3 init t3
h4 t2 init
h5 t2 t1
h6 t2 t3
h7 t5 init
h8 t5 t1
h9 t5 t3

(b) Table describing all possible full
extensions of the history in Figure 4a.

History wr−1
x1

(t3) wr−1
x2

(t5)

h258 undef t1

(c) Table describing the only conflict-
free extension of Figure 4a.

Fig. 4: Comparison between conflict-free extensions and full extensions of the his-
tory h in Figure 4a. In h, wr−1 is not defined for two pairs: (t3, x1) and (t5, x2);
where we identify the single SELECT event in a transaction with its transaction.
Table 4b describes all possible full extensions of h. For example, the first exten-
sion, h1, states that (init, t3) ∈ wrx1 and (init, t5) ∈ wrx2 . Algorithm 3 only
explore the only extension h258 described in Table 4c; where wr−1

x1
(t3) ↑ and

(t1, t5) ∈ wrx2
. The history h258 can be extended to histories h2, h5 and h8.

(init, t5) ∈ wrx2 , are not witnesses of h as WHERE(t5)(valuewr(init, x2)) = 1.
We note that init ̸∈ 0t5x2

(pco) = {t1}. Also, observe that (t5, t3) ∈ wr; so
extensions h3, h6 and h9, where (t3, t5) ∈ wrx2

, are not a witness of h. Once
again, t3 ̸∈ 0t5x2

(pco). In general, for every read event r and key x s.t. wr−1
x (r) ↑,

the extension of h where (t, r) ∈ wrx, t ̸∈ 0rx(pco), is not a witness of h. In
particular, if wr−1

x (r) ↑ but 0rx(pco) = ∅, then no witness of h can exist.
The sets 0rx(pco) are not sufficient to determine if a witness is a consistent

witness as our previous example shows: 0t3x1
(pco) = {init, t2, t5}, but h2 is not

consistent. Algorithm 3, combines an enumeration of history extensions with a
search for a consistent execution of each extension. The extensions are not nec-
essarily full. In case wr−1

x (r) is undefined, we use sets 1rx(pco) to decide whether
the extension of h requires specifying wr−1

x (r) for determining h’s consistency.
Algorithm 3 specifies wr−1

x (r) only if (r, x) is a so-called conflict, i.e., wr−1
x (r) is

undefined and 1rx(pco) ̸= ∅.
Following the example of Figure 4, we observe that 1t3x1

(pco) = ∅, all transac-
tions that write on x1 write non-negative values; but instead 1t5x2

(pco) = {init}.
Intuitively, this means that if some extension h′ that does not specify wr−1

x1
(t3)

does not violate any axiom when using some commit order co, then we can
extend h′, defining wr−1

x1
(t3) as some adequate transaction, and obtain a full his-

tory h s.t. the execution ξ = (h, co) is consistent. On the other hand, specifying
the write-read dependency of t5 on x2 matters. For not contradicting any axiom

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 15

using co, we may require (init, t5) ∈ wrx2 . However, such extension is not even
a witness of h as WHERE(init)(valuewr(init, x2)) = 1. This intuition holds for
the particular definitions of the isolation levels that Algorithm 3 considers.

A history is conflict-free if it does not have conflicts. Our previous discussion
reduces the problem of checking consistency of a history to checking consistency
of its conflict-free extensions. For example, the history h in Figure 4a is not
conflict-free but the extension h258 defined in Table 4c is. Instead of checking
consistency of the nine possible extensions, we only check consistency of h258.

Algorithm 3 starts by checking if there is at least a conflict-free extension
of h (line 6). If h is conflict-free, it directly calls Algorithm 4 (line 7); while
otherwise, it iterates over conflict-free extensions of h, calling Algorithm 4 on
each of them (line 11).

Algorithm 4 describes the search for the commit order of a conflict-free his-
tory h. This is a recursive enumeration of consistent prefixes of histories that
backtracks when detecting inconsistency (it generalizes Algorithm 2 in [7]). A
prefix of a history h = (T, so,wr) is a tuple P = (TP ,MP) where TP ⊆ T is a
set of transactions and MP : Keys → TP is a mapping s.t. (1) so predecessors of
transactions in TP are also in TP , i.e., ∀t ∈ TP . so

−1(t) ∈ TP and (2) for every
x, MP (x) is a so-maximal transaction in TP that writes x (MP records a last
write for every key).

For every prefix P = (TP ,MP) of a history h and a transaction t ∈ T \TP , we
say a prefix P ′ = (TP ′ ,MP ′) of h is an extension of P using t if TP ′ = TP ∪ {t}
and for every key x, MP ′(x) is t or MP (x). Algorithm 4 extensions, denoted as
P ∪ {t}, guarantee that for every key x, if t writes x, then MP ′(x) = t.

Extending the prefix P using t means that any transaction t′ ∈ TP is com-
mitted before t. Algorithm 4 focuses on special extensions that lead to commit
orders of consistent executions.

Axiom Predicate
Serializability, Prefix, ∄x ∈ Keys s.t. t writes x, wr−1

x (r) ↓
Read Atomic, Read Committed v(pcoPt)(t, r, x) holds in h and wr−1

x (r) ∈ TP

Conflict ∄x ∈ Keys, t′ ∈ TP ∪ {t} s.t. t′ writes x, wr−1
x (r) ↓

v(pcoPt)(t
′, r, x) holds in h and wr−1

x (r) ̸=MP (x)

Table 1: Predicates relating prefixes and visibility relations where pcoPt is defined
as pco ∪ {(t′, t) | t′ ∈ TP } ∪ {(t, t′′) | t′′ ∈ T \ (TP ∪ {t})}.

Definition 10. Let h be a history, P = (TP ,MP) be a prefix of h, t a transaction
that is not in TP and P ′ = (TP ′ ,MP ′) be an exetension of P using t. The prefix
P ′ is a consistent extension of P with t, denoted by P ▷t P

′, if
1. P is pco-closed: for every transaction t′ ∈ T s.t. (t′, t) ∈ pco then t′ ∈ TP ,
2. t does not overwrite other transactions in P : for every read event r out-

side of the prefix, i.e., tr(r) ∈ T \ TP ′ and every visibility relation v ∈
vis(iso(h))(tr(r)), the predicate vpPv (t, r) defined in Table 1 holds in h.

We say that a prefix is consistent if it is either the empty prefix or it is a consistent
extension of a consistent prefix.

16 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

INSERT({x1 : 0, x2 : 0, x3 : 0, x4 : 0})
init

INSERT({x2 : −1, x3 : 1})
t1

INSERT({x1 : 2, x4 : 2})
t2

SELECT(λr : r < 0)
INSERT({x2 : −3})

t3

INSERT({x1 : 4, x4 : 4})
t4

SELECT(λr : r ≥ 0)
INSERT({x3 : −5})

t5

soso

soso

so

wrx2,x3

wrx2

wrx3

wrx1,x4

wrx4

(a) Conflict-free history corresponding to the
extension h258 (Table 4c) of the history in Fig-
ure 4a

∅

⟨t1⟩

⟨t2⟩ ⟨t1, t4⟩

⟨t2, t4⟩ ⟨t1, t5⟩

⟨t2, t5⟩

⟨t3, t5⟩

a

b

(b) Execution of Algorithm 3 on the
history in Figure 5a.

Fig. 5: Applying Algorithm 4 on the conflict-free consistent history h258 on the
left. The right part pictures a search for valid extensions of consistent prefixes on
h258. Prefixes are represented by their so-maximal transactions, e.g., ⟨t2⟩ contains
all transactions which are before t2 in so, i.e., {init, t1, t2}. A red arrow means
that the search is blocked (the prefix at the target is not a consistent extension),
while a blue arrow mean that the search continues.

Figure 5b depicts the execution of Algorithm 4 on the conflict-free history
Figure 5a (history h258 from Table 4c). Blocked and effectuated calls are rep-
resented by read and blue arrows respectively. The read arrow a is due to con-
dition 1 in Definition 10: as t3 enforces PC, reads x4 from t2, and t4 is visible
to it (visPrefix(t4, t3, x4)), (t4, t2) ∈ pco; so consistent prefixes can not contain
t2 if they do not contain t4. The read arrow b is due to condition 2: as t5
enforces SER and it reads x1 from t4, consistent prefixes can not contain t2
unless t5 is included. When reaching prefix ⟨t3, t5⟩, the search terminates and
deduces that h is consistent. From the commit order induced by the search
tree we can construct the extension of h where missing write-read dependen-
cies are obtained by applying the axioms on such a commit order. In our case,
from init <co t1 <co t4 <co t5 <co t2 <co t3, we deduce that the execution
ξ = (h5, co) is a consistent execution of h258, and hence of h; where h5 is the
history described in Table 4b.

For complexity optimizations, Algorithm 4 requires an isolation level-
dependent equivalence relation between consistent prefixes. If there is trans-
action t ∈ T s.t. iso(h)(t) = SI, prefixes P = (TP ,MP) and P ′ = (TP ′ ,MP ′) are
equivalent iff they are equal (i.e. TP = TP ′ ,MP = MP ′). Otherwise, they are
equivalent iff TP = TP ′ .
Theorem 5. Let h be a client history whose isolation configuration is defined
using {SER, SI, PC, RA, RC}. Algorithm 3 returns true if and only if h is consistent.

In general, Algorithm 3 is exponential the number of conflicts in h. The
number of conflicts is denoted by #conf(h). The number of conflicts exponent
is implied by the number of mappings in Xh explored by Algorithm 3 (Eh is
the set of conflicts in h). The history width and size exponents comes from the

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 17

Algorithm 4 check consistency of conflict-free histories
1: function exploreConsistentPrefixes(h = (T, so,wr), P)
2: if |P | = |T | then return true

3: for all t ∈ T \ P s.t. P ▷t (P ∪ {t}) do
4: if ∃P ′ ∈ seen s.t. P ′ ≡iso(h) (P ∪ {t}) then continue
5: else if exploreConsistentPrefixes(h, P ∪ {t}) then return true
6: else seen← seen ∪ (P ∪ {t})
7: return false

1 2 3 4 5
Sessions

0

10

20

30

40

50

60

T
im

e
(s
)

Benchmark Twitter with 10 transactions per session

SER

SI

RC

SER+RC

SI+RC

1 2 3 4 5
Sessions

0

10

20

30

40

50

60

T
im

e
(s
)

Benchmark TPC-C with 10 transactions per session

SER

SI

RC

SER+RC

SI+RC

1 2 3 4 5
Sessions

0

10

20

30

40

50

60

T
im

e
(s
)

Benchmark TPC-C PC with 10 transactions per session

SER

SI

RC

SER+RC

SI+RC

Fig. 6: Running time of Algorithm 3 while increasing the number of sessions.
Each point represents the average running time of 5 random clients of such size.

number of prefixes explored by Algorithm 4 which is |h|width(h) · width(h)|Keys|
in the worst case (prefixes can be equivalently described by a set of so-maximal
transactions and a mapping associating keys to sessions).

Theorem 6. For every client history h whose isolation configuration is
composed of {SER, SI, PC, RA, RC} isolation levels, Algorithm 3 runs in
O(|h|#conf(h)+width(h)+9 ·width(h)|Keys|). Moreover, if no transaction employs SI
isolation level, Algorithm 3 runs in O(|h|#conf(h)+width(h)+8).

On bounded, conflict-free histories only using SER, PC, RA, RC as isolation lev-
els, Algorithm 3 runs in polynomial time. For instance, standard reads and writes
can be simulated using INSERT and SELECT with WHERE clauses that select rows
based on their key being equal to some particular value. In this case, histories are
conflict-less (wr would be defined for the particular key asked by the clause, and
writes on other keys would not satisfy the clause). A more general setting where
WHERE clauses restrict only values that are immutable during the execution (e.g.,
primary keys) and deletes only affect non-read rows also falls in this category.

6 Experimental evaluation
We evaluate an implementation of checkConsistency in the context of the
Benchbase [12] database benchmarking framework. We apply this algorithm on
histories extracted from randomly generated client programs of a number of
database-backed applications. We use PostgreSQL 14.10 as a database. The ex-
periments were performed on an Apple M1 with 8 cores and 16 GB of RAM.
Implementation. We extend the Benchbase framework with an additional
package for generating histories and checking consistency. Applications from

18 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

Benchbase are instrumented in order to be able to extract histories, the wr
relation in particular. Our implementation is publicly available [5].

Our tool takes as input a configuration file specifying the name of the appli-
cation and the isolation level of each transaction in that application. For com-
puting the wr relation and generating client histories, we extend the database
tables with an extra column WRITEID which is updated by every write instruc-
tion with a unique value. SQL queries are also modified to return whole rows
instead of selected columns. To extract the wr relation for UPDATE and DELETE we
add RETURNING clauses. Complex operators such as INNER JOIN are substituted
by simple juxtaposed SQL queries (similarly to [8]). We map the result of each
query to local structures for generating the corresponding history. Transactions
aborted by the database (and not explicitly by the application) are discarded.
Benchmark. We analyze a set of benchmarks inspired by real-world applica-
tions and evaluate them under different types of clients and isolation configu-
rations. We focus on isolation configurations implemented in PostgreSQL, i.e.
compositions of SER, SI and RC isolation levels.

In average, the ratio of SER/SI transactions is 11% for Twitter and 88%
for TPC-C and TPC-C PC. These distributions are obtained via the random
generation of client programs implemented in BenchBase. In general, we observe
that the bottleneck is the number of possible history extensions enumerated at
line 9 in Alg. 3 and not the isolation configuration. This number is influenced
by the distribution of types of transactions, e.g., for TPC-C, a bigger number
of transactions creating new orders increases the number of possible full history
extensions. We will clarify.

Twitter [12] models a social network that allows users to publish tweets and
get their followers, tweets and tweets published by other followers. We consider
five isolation configurations: SER, SI and RC and the heterogeneous SER+RC and
SI + RC, where publishing a tweet is SER (resp., SI) and the rest are RC. The
ratio of SER (resp. SI) transactions w.r.t. RC is 11% on average.

TPC-C [24] models an online shopping application with five types of trans-
actions: reading the stock, creating a new order, getting its status, paying it and
delivering it. We consider five isolation configurations: the homogeneous SER, SI
and RC and the combinations SER+ RC and SI+ RC, where creating a new order
and paying it have SER (respectively SI) as isolation level while the rest have RC.
The ratio of SER (resp. SI) transactions w.r.t. RC is 88% on average.

TPC-C PC is a variant of the TPC-C benchmark whose histories are always
conflict-free. DELETE queries are replaced by UPDATE with the aid of extra columns
simulating the absence of a row. Queries whose WHERE clauses query mutable
values are replaced by multiple simple instructions querying only immutable
values such as unique ids and primary keys.
Experimental Results. We designed two experiments to evaluate
checkConsistency’s performance for different isolation configurations increas-
ing the number of transactions per session (the number of sessions is fixed), the
number of sessions (the number of transactions per session is fixed), resp. We
use a timeout of 60 seconds per history.

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 19

3 6 9 12 15 18 21 24
Transactions

0

10

20

30

40

50

60

T
im

e
(s
)

Benchmark Twitter with 3 sessions

SER

SI

RC

SER+RC

SI+RC

3 6 9 12 15 18 21 24
Transactions

0

10

20

30

40

50

60

T
im

e
(s
)

Benchmark TPC-C with 3 sessions

SER

SI

RC

SER+RC

SI+RC

3 6 9 12 15 18 21 24
Transactions

0

10

20

30

40

50

60

T
im

e
(s
)

Benchmark TPC-C PC with 3 sessions

SER

SI

RC

SER+RC

SI+RC

Fig. 7: Running time of Algorithm 3 increasing the number of transactions per
session. We plot the average running time of 5 random clients of such size.

The first experiment investigates the scalability of Algorithm 3 when increas-
ing the number of sessions. For each benchmark and isolation configuration, we
consider 5 histories of random clients (each history is for a different client) with
an increasing number of sessions and 10 transactions per session (around 400
histories across all benchmarks). No timeouts appear with less than 4 sessions.
Figure 6 shows the running time of the experiment.

The second experiment investigates the scalability of Algorithm 3 when in-
creasing the number of transactions. For each benchmark and isolation configu-
ration, we consider 5 histories of random clients, each having 3 sessions and an
increasing number of transactions per session (around 1900 histories across all
benchmarks). Figure 7 shows its running time.

The runtime similarities between isolation configurations containing SI ver-
sus those without it show that in practice, the bottleneck of Algorithm 3 is the
number of possible history extensions enumerated at line 11 in Algorithm 3; i.e.
the number of conflicts in a history. This number is influenced by the distribution
of types of transactions, e.g., for TPC-C, a bigger number of transactions cre-
ating new orders increases the number of possible full history extensions. Other
isolation levels not implemented by PostgreSQL, e.g., prefix consistency PC, are
expected to produce similar results.

Both experiments show that Algorithm 3 scales well for histories with a small
number of writes (like Twitter) or conflicts (like TPC-C PC). In particular,
Algorithm 3 is quite efficient for typical workloads needed to expose bugs in
production databases which contain less than 10 transactions [7,20,18].

A third experiment compares Algorithm 3 with a baseline consisting in a
naive approach where we enumerate witnesses and executions of such witnesses
until consistency is determined. We consider Twitter and TPC-C as benchmarks
and execute 5 histories of random clients, each having 3 sessions and an increasing
number of transactions per session (around 100 histories across all benchmarks).
We execute each client under RC and check the obtained histories for consistency
with respect to SER.

The naive approach either times out for 35.5%, resp., 95.5% of the histories
of Twitter, resp., TPC-C, or finishes in 5s on average (max 25s). In comparison,
Algorithm 3 has no timeouts for Twitter and times out for 5.5% of the TPC-C
histories; finishing in 1.5s on average (max 12s). Averages are computed w.r.t.
non-timeout instances. The total number of executed clients is around 100. Only

20 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

one TPC-C history was detected as inconsistent, which shows that the naive
approach does not timeout only in the worst-case (inconsistency is a worst-case
because all extensions and commit orders must be proved to be invalid).

A similar analysis on the TPC-C PC benchmark is omitted: TPC-C PC is
a conflict-free variation of TPC-C with more operations per transaction. Thus,
the rate of timeouts in the naive approach increases w.r.t. TPC-C, while the rate
of timeouts using Algorithm 3 decreases.

Comparisons with prior work [7,4,18,20] are not possible as they do not apply
to SQL (see Section 7 for more details).

This evaluation demonstrates that our algorithm scales well to practical test-
ing workloads and that it outperforms brute-force search.

7 Related work

The formalization of database isolation levels has been considered in previous
work. Adya [2] has proposed axiomatic specifications for isolation levels, which
however do not concern more modern isolation levels like PC or SI and which are
based on low-level modeling of database snapshots. We follow the more modern
approach in [11,7] which however addresses the restricted case when transactions
are formed of reads and writes on a static set of keys (variables) and not generic
SQL queries, and all the transactions in a given execution have the same isolation
level. Our axiomatic model builds on axioms defined by Biswas et al. [7] which
are however applied on a new model of executions that is specific to SQL queries.

The complexity of checking consistency w.r.t isolation levels has been studied
in [21,7]. The work of Papadimitriou [21] shows that checking serializability is
NP-complete while the work of Biswas et al. [7] provides results for the same
isolation levels as in our work, but in the restricted case mentioned above.

Checking consistency in a non-transactional case, shared-memory or
distributed systems, has been investigated in a number of works,
e.g., [9,16,13,10,17,14,1,15,3]. Transactions introduce additional challenges that
make these results not applicable.

Existing tools for checking consistency in the transactional case of distributed
databases, e.g., [7,4,18,20] cannot handle SQL-like semantics, offering guarantees
modulo their transformations to reads and writes on static sets of keys. Our
results show that handling the SQL-like semantics is strictly more complex (NP-
hard in most cases).

Acknowledgements

We thank the anonymous reviewers for their feedback. This work was partially
supported by the Agence National de Recherche (ANR) grant CENTEANES

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 21

References

1. Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Tuan Phong Ngo.
Optimal stateless model checking under the release-acquire semantics. Proc. ACM
Program. Lang., 2(OOPSLA):135:1–135:29, 2018. doi:10.1145/3276505.

2. A. Adya. Weak consistency: A generalized theory and optimistic implementations
for distributed transactions. Technical report, USA, 1999.

3. Pratyush Agarwal, Krishnendu Chatterjee, Shreya Pathak, Andreas Pavlogiannis,
and Viktor Toman. Stateless model checking under a reads-value-from equivalence.
In Alexandra Silva and K. Rustan M. Leino, editors, Computer Aided Verifica-
tion - 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021,
Proceedings, Part I, volume 12759 of Lecture Notes in Computer Science, pages
341–366. Springer, 2021. doi:10.1007/978-3-030-81685-8_16.

4. Peter Alvaro and Kyle Kingsbury. Elle: Inferring isolation anomalies from exper-
imental observations. Proc. VLDB Endow., 14(3):268–280, 2020. URL: http://
www.vldb.org/pvldb/vol14/p268-alvaro.pdf, doi:10.5555/3430915.3442427.

5. anonymous authors. Benchbase-evaluation, October 2024. URL:
omittedforanonymity.

6. Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J. O’Neil,
and Patrick E. O’Neil. A critique of ANSI SQL isolation levels. In Michael J.
Carey and Donovan A. Schneider, editors, Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, San Jose, California, USA,
May 22-25, 1995, pages 1–10. ACM Press, 1995. doi:10.1145/223784.223785.

7. Ranadeep Biswas and Constantin Enea. On the complexity of checking transac-
tional consistency. Proc. ACM Program. Lang., 3(OOPSLA):165:1–165:28, 2019.
doi:10.1145/3360591.

8. Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and
Akash Lal. Monkeydb: effectively testing correctness under weak isolation levels.
Proc. ACM Program. Lang., 5(OOPSLA):1–27, 2021. doi:10.1145/3485546.

9. Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza. On ver-
ifying causal consistency. In Giuseppe Castagna and Andrew D. Gordon, editors,
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017, pages 626–638. ACM,
2017. doi:10.1145/3009837.3009888.

10. Jason F. Cantin, Mikko H. Lipasti, and James E. Smith. The complexity of veri-
fying memory coherence and consistency. IEEE Trans. Parallel Distributed Syst.,
16(7):663–671, 2005. doi:10.1109/TPDS.2005.86.

11. Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. A framework for trans-
actional consistency models with atomic visibility. In Luca Aceto and David
de Frutos-Escrig, editors, 26th International Conference on Concurrency Theory,
CONCUR 2015, Madrid, Spain, September 1.4, 2015, volume 42 of LIPIcs, pages
58–71. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. URL: https://
doi.org/10.4230/LIPIcs.CONCUR.2015.58, doi:10.4230/LIPICS.CONCUR.2015.
58.

12. Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-
Mauroux. Oltp-bench: An extensible testbed for benchmarking relational
databases. Proc. VLDB Endow., 7(4):277–288, 2013. URL: http://www.vldb.
org/pvldb/vol7/p277-difallah.pdf, doi:10.14778/2732240.2732246.

13. Michael Emmi and Constantin Enea. Sound, complete, and tractable linearizability
monitoring for concurrent collections. Proc. ACM Program. Lang., 2(POPL):25:1–
25:27, 2018. doi:10.1145/3158113.

https://doi.org/10.1145/3276505
https://doi.org/10.1007/978-3-030-81685-8_16
http://www.vldb.org/pvldb/vol14/p268-alvaro.pdf
http://www.vldb.org/pvldb/vol14/p268-alvaro.pdf
https://doi.org/10.5555/3430915.3442427
omitted for anonymity
https://doi.org/10.1145/223784.223785
https://doi.org/10.1145/3360591
https://doi.org/10.1145/3485546
https://doi.org/10.1145/3009837.3009888
https://doi.org/10.1109/TPDS.2005.86
https://doi.org/10.4230/LIPIcs.CONCUR.2015.58
https://doi.org/10.4230/LIPIcs.CONCUR.2015.58
https://doi.org/10.4230/LIPICS.CONCUR.2015.58
https://doi.org/10.4230/LIPICS.CONCUR.2015.58
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
https://doi.org/10.14778/2732240.2732246
https://doi.org/10.1145/3158113

22 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

14. Florian Furbach, Roland Meyer, Klaus Schneider, and Maximilian Senftleben.
Memory-model-aware testing: A unified complexity analysis. ACM Trans. Em-
bed. Comput. Syst., 14(4):63:1–63:25, 2015. doi:10.1145/2753761.

15. Phillip B. Gibbons and Ephraim Korach. On testing cache-coherent shared mem-
ories. In Lawrence Snyder and Charles E. Leiserson, editors, Proceedings of the
6th Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA
’94, Cape May, New Jersey, USA, June 27-29, 1994, pages 177–188. ACM, 1994.
doi:10.1145/181014.181328.

16. Phillip B. Gibbons and Ephraim Korach. Testing shared memories. SIAM J.
Comput., 26(4):1208–1244, 1997. doi:10.1137/S0097539794279614.

17. Alex Gontmakher, Sergey V. Polyakov, and Assaf Schuster. Complexity of verifying
java shared memory execution. Parallel Process. Lett., 13(4):721–733, 2003. doi:
10.1142/S0129626403001628.

18. Kaile Huang, Si Liu, Zhenge Chen, Hengfeng Wei, David A. Basin, Haixiang Li, and
Anqun Pan. Efficient black-box checking of snapshot isolation in databases. Proc.
VLDB Endow., 16(6):1264–1276, 2023. URL: https://www.vldb.org/pvldb/
vol16/p1264-wei.pdf, doi:10.14778/3583140.3583145.

19. Jepsen. Distributed systems testing, 2020. https://jepsen.io/.
20. Si Liu, Long Gu, Hengfeng Wei, and David A. Basin. Plume: Efficient and com-

plete black-box checking of weak isolation levels. Proc. ACM Program. Lang.,
8(OOPSLA2):876–904, 2024. doi:10.1145/3689742.

21. Christos H. Papadimitriou. The serializability of concurrent database updates. J.
ACM, 26(4):631–653, 1979. doi:10.1145/322154.322158.

22. Andrew Pavlo. What are we doing with our lives?: Nobody cares about our con-
currency control research. In Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun
Yang, and Dan Suciu, editors, Proceedings of the 2017 ACM International Con-
ference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA,
May 14-19, 2017, page 3. ACM, 2017. doi:10.1145/3035918.3056096.

23. Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin
Theimer, and Brent B. Welch. Session guarantees for weakly consistent repli-
cated data. In Proceedings of the Third International Conference on Parallel and
Distributed Information Systems (PDIS 94), Austin, Texas, USA, September 28-
30, 1994, pages 140–149. IEEE Computer Society, 1994. doi:10.1109/PDIS.1994.
331722.

24. TPC. Technical report, Transaction Processing Performance Council, Febru-
ary 2010. URL: http://www.tpc.org/tpc_documents_current_versions/pdf/
tpc-c_v5.11.0.pdf.

https://doi.org/10.1145/2753761
https://doi.org/10.1145/181014.181328
https://doi.org/10.1137/S0097539794279614
https://doi.org/10.1142/S0129626403001628
https://doi.org/10.1142/S0129626403001628
https://www.vldb.org/pvldb/vol16/p1264-wei.pdf
https://www.vldb.org/pvldb/vol16/p1264-wei.pdf
https://doi.org/10.14778/3583140.3583145
https://jepsen.io/
https://doi.org/10.1145/3689742
https://doi.org/10.1145/322154.322158
https://doi.org/10.1145/3035918.3056096
https://doi.org/10.1109/PDIS.1994.331722
https://doi.org/10.1109/PDIS.1994.331722
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 23

A An operational semantics for SQL-like distributed
databases (Section 3.3).

begin
t fresh e fresh P(j) = begin(ι);Body; commit;P B(j) = ϵ

τ = 1 +max{T(e′) | e′ ∈ events(h)} T′ = T[e→ τ] δ = snapshotι(h,S,T
′, e, begin)

h′ = h⊕j (t, ι, {(e, begin)}, ∅)
h,γ,B, I,T,S,P⇒ h′,γ[j 7→ ∅],B[j 7→ Body; commit], I[t 7→ ι],T′,S[e 7→ δ],P[j 7→ S]

if-true
ψ(a)[γ(j)(a)/a : a ∈ a] B(j) = if(ψ(a)){Instr};B
h,γ,B, I,T,S,P⇒ h,γ,B[j 7→ Instr;B], I,T,S,P

if-false
¬ψ(a)[γ(j)(a)/a : a ∈ a] B(j) = if(ψ(x)){Instr};B

h,γ,B, I,T,S,P⇒ h,γ,B[j 7→ B], I,T,S,P

local
v = e[γ(j)(a′)/a′ : a′ ∈ a′] B(j) = a := e(a′);B

h,γ,B, I,T,S,P⇒ h,γ[j, a 7→ v],B[j 7→ B], I,T,S,P

commit
e fresh t = last(h, j) ι = iso(h)(t) B(j) = commit

τ = 1 +max{T(e′) | e′ ∈ events(h)} T′ = T[e→ τ]
δ = snapshotι(h,S,T

′, e, commit) validateι(h,T
′, t)

h,γ,B, I,T,P⇒ h⊕j (e, commit),γ,B[j 7→ ϵ], I,T′,S[e 7→ δ],P

abort
e fresh t = last(h, j) ι = iso(h)(t) B(j) = abort;B
τ = 1 +max{T(e′) | e′ ∈ events(h)} T′ = T[e→ τ]
δ = snapshotι(h,S,T

′, e, abort) validateι(h,T
′, t)

h,γ,B, I,T,S,P⇒ h⊕j (e, abort),γ,B[j 7→ ϵ], I,T′,S[e 7→ δ],P

Fig. A.1: An operational semantics for transactional programs. Above, last(h, j)
denotes the last transaction log in the session order so(j) of h while snapshotι
and readFrom denote the snapshot visible to an instruction and the writes it
reads from, respectively. The validateι checks if a transaction can be committed.
They are defined in Figure A.3.

.

Formally, the operational semantics is defined as a transition relation ⇒
between configurations. A configuration is a tuple containing the following:

– history h recording the instructions executed in the past,

24 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

insert
e fresh t = last(h, j) ι = iso(h)(t) B(j) = INSERT(R);B

τ = 1 +max{T(e′) | e′ ∈ events(h)} T′ = T[e→ τ]
δ = snapshotι(h,S,T

′, e, INSERT) h′ = h⊕j (e, INSERT(R))

h,γ,B, I,T,S,P⇒ h′,γ,B[j 7→ B], I,T′,S[e 7→ δ],P

select
e fresh t = last(h, j) ι = iso(h)(t) B(j) = a := SELECT(p);B

τ = 1 +max{T(e′) | e′ ∈ events(h)} T′ = T[e→ τ]
δ = snapshotι(h,S,T

′, e, SELECT) w = readFrom(h,T, t, δ)

h′ = (h⊕j (e, SELECT(p)))
⊕

x∈Keys,w[x] ̸=⊥

wr(w[x], e)

h,γ,B, I,T,S,P⇒ h′,γ[(j, a) 7→ {r ∈ δ : p(r)}],B[j 7→ B], I,T′,S[e 7→ δ],P

update
e fresh t = last(h, j) ι = iso(h)(t) B(j) = UPDATE(p, U);B

τ = 1 +max{T(e′) | e′ ∈ events(h)} T′ = T[e→ τ]
δ = snapshotι(h,S,T

′, e, UPDATE) w = readFrom(h,T, t, δ)

h′ = (h⊕j (e, UPDATE(p, U)))
⊕

x∈Keys,w[x] ̸=⊥

wr(w[x], e)

h,γ,B, I,T,S,P⇒ h′,γ,B[j 7→ B], I,T′,S[e 7→ δ],P

delete
e fresh t = last(h, j) ι = iso(h)(t) B(j) = DELETE(p);B

τ = 1 +max{T(e′) | e′ ∈ events(h)} T′ = T[e→ τ]
δ = snapshotι(h,S,T

′, e, DELETE) w = readFrom(h,T, t, δ)

h′ = (h⊕j (e, DELETE(p)))
⊕

x∈Keys,w[x] ̸=⊥

wr(w[x], e)

h,γ,B, I,T,S,P⇒ h′,γ,B[j 7→ B], I,T′,S[e 7→ δ],P

Fig. A.2: An operational semantics for transactional programs. Above, last(h, j)
denotes the last transaction log in the session order so(j) of h while snapshotι
and readFrom denote the snapshot visible to an instruction and the writes it
reads from, respectively. The validateι checks if a transaction can be committed.
They are defined in Figure A.3.

.

– a valuation map γ that records local variable values in the current transac-
tion of each session (γ associates identifiers of sessions that have live trans-
actions with valuations of local variables),

– a map B that stores the code of each live transaction (associating session
identifiers with code),

– a map I that tracks the isolation level of each executed transaction,
– a map T that associates events in the history with unique timestamps,
– a map S that associates events in the history with snapshots of the database,
– sessions/transactions P that remain to be executed from the original pro-

gram.

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 25

For readability, we define a program as a partial function P : SessId ⇀ Sess
that associates session identifiers in SessId with sequences of transactions as
defined in Section 2.1. Similarly, the session order so in a history is defined as
a partial function so : SessId ⇀ Tlogs∗ that associates session identifiers with
sequences of transaction logs. Two transaction logs are ordered by so if one occurs
before the other in some sequence so(j) with j ∈ SessId.

Before presenting the definition of ⇒I , we introduce some notation. Let h be
a history that contains a representation of so as above. We use h⊕j (t, ιt, E, pot)
to denote a history where (t, ιt, E, pot) is appended to so(j). Also, for an event
e, h ⊕j e is the history obtained from h by adding e to the last transaction log
in so(j) and as a last event in the program order of this log (i.e., if so(j) =
σ; (t, ιt, E, pot), then the session order so′ of h⊕j e is defined by so′(k) = so(k)
for all k ̸= j and so(j) = σ; (t, ιt, E ∪ e, po ∪ {(e′, e) : e′ ∈ E})). Finally, for a
history h = (T, so,wr), h ⊕ wr(t, e) is the history obtained from h by adding
(t, e) to the write-read relation.

Figures A.1and A.2 list the rules defining ⇒. We distinguish between lo-
cal computation rules (if-true, if-false and local) and database-accesses
rules (begin, insert, select, update, delete, commit and abort); each
associated to its homonymous instruction. Database-accesses get an increasing
timestamp τ as well as an isolation-depending snapshot of the database using
predicate snapshotι; updating adequately the timestamp and snapshot maps (T
and S respectively). Timestamps are used for validating the writes of a trans-
action and blocking inconsistent runs as well as for defining the set of possible
snapshots any event can get. We use predicate readFrom for determining the val-
ues read by an event. Those reads depend on both the event’s snapshot as well
as the timestamp of every previously executed event. Their formal definitions
are described in Figure A.3.

The begin rule starts a new transaction, provided that there is no other live
transaction (B = ϵ) in the same session. It adds an empty transaction log to the
history and schedules the body of the transaction. if-true and if-false check
the truth value of a Boolean condition of an if conditional. local handles the
case where some local computation is required. insert, select, update and
delete handle the database accesses. insert add some rows R in the history.
select, update and delete read every key from a combination of its snapshot
and the local writes defined by readFrom function. The predicate _ writes _
implicitly uses the previous information stored in the history via the function
valuewr. Finally commit and abort validate that the run of the transaction
correspond to the isolation level specification. These rules may block in case the
validation is not satisfied as the predicate valuation does not change with the
application of posterior rules.

An initial configuration for program P contains the program P along with
a history h = ({t0}, ∅, ∅), where t0 is a transaction log containing only writes
that write the initial values of all keys and whose timestamp and snapshot is
0 (S,T = [t0 7→ 0]), and it does not contain transaction code nor local keys
(γ,B = ∅). A run ρ of a program P is a sequence of configurations c0c1 . . . cn

26 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

where c0 is an initial configuration for P, and cm ⇒ cm+1, for every 0 ≤ m < n.
We say that cn is reachable from c0. The history of such a run, history(ρ), is
the history hn in the last configuration cn. A configuration is called final if it
contains the empty program (P = ∅). Let hist(P) denote the set of all histories
of a run of P that ends in a final configuration.

snapshotSER(h,S,T
′, e, ξ) =

max

T′(ct′)

∣∣∣∣∣∣
t′ ∈ h ∧
ct′ = commit(t′) ∧
T′(ct′) < T′(e)

 if ξ = begin

S(begin(tr(e))) otherwise

snapshotSI(h,S,T
′, e, ξ) =

choice

T′(ct′)

∣∣∣∣∣∣∣
t′ ∈ h ∧
ct′ = commit(t′) ∧
vecT′(ct′) < T′(e)

 if ξ = begin

S(begin(tr(e))) otherwise

snapshotRC(h,S,T
′, e, ξ) = choice

T′(ct′)

∣∣∣∣∣∣∣∣∣∣∣

t′ ∈ h∧
ct′ = commit(t′) ∧ T′(ct′) < T′(e)∧

∀e′.
(
(e′, e) ∈ po ∨
(tr(e′), tr(e)) ∈ so

)
=⇒ S(e′) ≤ T(ct′)

readFrom(h,T, t, δ) = [x 7→ (localWr[x] ̸= ⊥) ?⊥ : wx for each x ∈ Keys]

where localWr[x] = maxpo{e | tr(e) = t ∧ e writes x} ∪ {⊥}

and wx writes x ∧ T(wx) = max

{
T(w′)

∣∣∣∣ w′ ∈ events(h) ∧ w′ writes x ∧
T(commit(tr(w′))) ≤ δ

}

validateSER(h,T
′, t) =

(
̸ ∃t′ ∈ h, x ∈ Keys s.t. (t reads x ∨ t writes x) ∧ t′ writes x

∧ T′(begin(t)) < T′(commit(t′)) < T′(end(t))

)

validateSI(h,T
′, t) =

(
̸ ∃t′ ∈ h, x ∈ Keys s.t. t writes x ∧ t′ writes x ∧

∧ T′(begin(t)) < T′(commit(t′)) < T′(end(t))

)

validateRC(h,T
′, t) = true

Fig. A.3: Definition of auxiliary functions for the operational semantics. The
function choice receives a set as input and returns one of its elements.

.

The proof of Theorem 1 is split in two parts: Lemma 2 and Lemma 4. In
Lemma 2, we prove by induction that for any run ρ, history(ρ) is a full history;
using the auxiliary Lemma 1 about pending transactions. We then define in

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 27

Equation 5 a relation on transactions that plays the role of consistency witness
for history(ρ). Then, we prove in Lemma 3 that such relation is a commit order
for history(ρ) to conclude in Lemma 4 that history(ρ) is indeed consistent. In all
cases, we do a case-by-case analysis depending on which rule is employed during
the inductive step.

For the sake of simplifying our notation, we denote by rule(ρ, j, ρ′) to the rule
s.t. applied to run ρ on session j leads to configuration ρ′.

Lemma 1. Let ρ be a run and history(ρ) = (T, so,wr) be its history. Any pending
transaction in T is (so ∪ wr)-maximal.

Proof. We prove by induction on the length of a run ρ that any pending trans-
action is (so∪wr)-maximal; where history(ρ) = (T, so,wr). The base case, where
ρ = {c0} and c0 is an initial configuration, is immediate by definition. Let us
suppose that for every run of length at most n the property holds and let ρ′ a
run of length n + 1. As ρ′ is a sequence of configurations, there exist a reach-
able run ρ of length n, a session j and a rule r s.t. r = rule(ρ, j, ρ′). Let us call
h = (T, so,wr), h′ = (T ′, so′,wr′) and e to history(ρ), history(ρ′) and the last
event in po-order belonging to last(h, j) respectively. By induction hypothesis,
any pending transaction in h is (so ∪ wr)-maximal. To conclude the inductive
step, we show that for every possible rule r s.t. r = rule(ρ, j, ρ′), the property
also holds in h′.

– local, if-false, if-true, insert, commit, abort: The result trivially
holds as wr′ = wr, so′ = so and complete(T ′) ⊆ complete(T).

– begin: We observe that in this case, T = T ∪ {last(h, j)}, reads(T ′) =
reads(T), wr′ = wr and so′ = so ∪ {(t′, last(h, j)) | ses(t′) = j}. Thus,
last(h, j) is pending and so′ ∪ wr′-maximal. Moreover, as described in Fig-
ure A.1, B(j) = ϵ; so there is no other transaction in session j that is pend-
ing. Hence, as T ′ \complete(T ′) = T complete(T)∪{last(h, j)}, by induction
hypothesis, every pending transaction is so′ ∪ wr′-maximal.

– select, update, delete: Figure A.2 describes h′ by the equation h′ =
(h ⊕j (e, rule(ρ, j, s)))

⊕
x∈Keys,w[x] ̸=⊥ wr(w[x], e); where e is the new event

executed and w is defined following the descriptions in Figures A.2 and A.3.
In this case, T ′ = T, reads(T ′) = reads(T) ∪ {e}, so′ = so, ∀x ∈ Keys s.t.
w[x] = ⊥, wr′x = wrx and ∀x ∈ Keys s.t. w[x] ̸= ⊥, wr′x = wrx ∪ {(w[x], e)}.
Note that as described by Figure A.3, in the latter case, when w[x] ̸= ⊥,
tr(w[x]) ∈ complete(T) = complete(T ′). In conclusion, using the induction
hypothesis, we also conclude that every pending transaction is so′ ∪ wr′-
maximal.

⊓⊔

Lemma 2. For every run ρ, history(ρ) is a full history.

Proof. We prove by induction on the length of a run ρ that history(ρ) is a full
history; where the base case, ρ = {c0} and c0 is an initial configuration, is trivial

28 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

by definition. Let us suppose that for every run of length at most n the property
holds and let ρ′ a run of length n+1. As ρ′ is a sequence of configurations, there
exist a reachable run ρ of length n, a session j and a rule r s.t. r = rule(ρ, j, ρ′).
Let us call h = (T, so,wr), h′ = (T ′, so′,wr′) and e to history(ρ), history(ρ′)
and the last event in po-order belonging to last(h, j) respectively. By induction
hypothesis, h is a full history. To conclude the inductive step, we show that for
every possible rule r s.t. r = rule(ρ, j, ρ′), the history h′ is also a full history. In
particular, by definitions 1 and 2, it suffices to prove that so′ ∪ wr′ is an acyclic
relation and that for every variable x and read event r, wr′x

−1
(r) ↓ if and only if

r does not read x from a local write and in such case, valuewr′(wr′x
−1

(r), x) ̸= ⊥.

– local, if-false, if-true, insert, commit, abort: The result trivially
holds as reads(T ′) = reads(T),wr′ = wr and so′ = so; using that h is consis-
tent.

– begin: We observe that h′ = h ⊕j (e, begin), so T = T ∪ {last(h, j)},
reads(T ′) = reads(T), wr′ = wr and so′ = so∪{(t′, last(h, j)) | ses(t′) = j}.
In such case, by Lemma 1, t is so′ ∪ wr′-maximal. Thus, so′ ∪ wr′ is acyclic
as so ∪ wr is also acyclic. Finally, as wr′ = wr, we conclude that h′ is a full
history.

– select, update, delete: Here h′ = (h ⊕j

(e, rule(ρ, j, s)))
⊕

x∈Keys,w[x] ̸=⊥ wr(w[x], e) where e is the new event
executed and w is defined following the descriptions in Figures A.2 and A.3.
In this case, T ′ = T, reads(T ′) = reads(T) ∪ {e}, so′ = so, ∀x ∈ Keys s.t.
w[x] = ⊥, wr′x = wrx and ∀x ∈ Keys s.t. w[x] ̸= ⊥, wr′x = wrx ∪ {(w[x], e)}.
Note that as the timestamp of any event is always positive and T(init) = 0;
for any key x, w[x] ̸= ⊥ if and only if localWr[x] = ⊥. Thus, w is well
defined, and wr′x

−1
(r) ↓ if and only localWr[x] = ⊥. In such case, as any

event w writes on a key x if and only if valuewr(w, x) ̸= ⊥, we conclude that
valuewr′(wr

′
x
−1

(r), x) ̸= ⊥. To conclude the result, we need to show that
so′ ∪ wr′ is acyclic. As ρ is reachable, by Figure A.3’s definition we know
that for any event r and key x, if wr−1

x (r) ↓, tr(wr−1
x (r)) ∈ cmtt(h). Thus, by

Lemma 1, last(h, j) is so′ ∪wr′-maximal as it is not committed. Therefore,
by the definition of so′ and wr′, as so ∪ wr is acyclic and last(h, j) is
so′ ∪ wr′-maximal, so′ ∪ wr′ is also acyclic. In conclusion, h′ is a full history.

⊓⊔

Once proven that for any run ρ, history(ρ) is a full history, we need to prove
that there exists a commit order coρ that witnesses history(ρ) consistency. Equa-
tion 5 defines a relation that we prove in Lemma 3 that it is a total order for
history(ρ).

(t, t′) ∈ coρ ⇐⇒

t ∈ complete(T) ∧ t′ ∈ complete(T) ∧

T(end(t)) < T(end(t′))
t ∈ complete(T) ∧ t′ ̸∈ complete(T)
t ̸∈ complete(T) ∧ t′ ̸∈ complete(T) ∧

T(begin(t)) < T(begin(t′))

(5)

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 29

Lemma 3. For every run ρ, the relation coρ defined above is a commit order
for history(ρ).

Proof. We prove by induction on the length of a run ρ that the relation coρ
defined by the equation below is a commit order for history(ρ), i.e., if history(ρ) =
(T, so,wr), then so ∪ wr ⊆ coρ.

The base case, where ρ is composed only by an initial configuration is im-
mediate as in such case wr = ∅. Let us suppose that for every run of length at
most n the property holds and let ρ′ a run of length n + 1. As ρ′ is a sequence
of configurations, there exist a reachable run ρ of length n, a session j and a
rule r s.t. r = rule(ρ, j, ρ′). Let us call h = (T, so,wr), h′ = (T ′, so′,wr′) and e
to history(ρ), history(ρ′) and the last event in po-order belonging to last(h, j)
respectively. By induction hypothesis, coρ is a commit order for h. To conclude
the inductive step, we show that coρ′ is also a commit order for h′.

– local, if-false, if-true: As h = h′ and Tρ′ = Tρ, coρ′ = coρ. Thus, the
result trivially holds.

– begin: In this case, e = begin(last(h, j)) and last(h, j) ̸∈ complete(Tρ′).
Note that for any event e′ ̸= e, T(e) > T(e′) and complete(T ′

ρ) = complete(ρ).
Thus, coρ′ = coρ ∪{(t′, last(h′, j)) | t′ ∈ T}. As so∪wr ⊆ coρ, wr′ = wr and
so′ = so∪{(t′, last(h, j)) | ses(t′) = j}, so′∪wr′ ⊆ coρ′ ; so coρ′ is a commit
order for h′.

– insert: In this case, as complete(T ′
ρ) = complete(Tρ), coρ′ = coρ. Hence, as

so′ = so and wr′ = wr, so′ ∪ wr′ ⊆ coρ′ .
– select, update, delete: Once again, as complete(T ′

ρ) = complete(Tρ),
coρ′ = coρ. Note that so′ = so, ∀x ∈ Keys s.t. w[x] = ⊥, wr′x = wrx and
∀x ∈ Keys s.t. w[x] ̸= ⊥, wr′x = wrx ∪ {(w[x], e)}. In the latter case, where
w[x] ̸= ⊥, we know that tr(w[x]) ∈ complete(T) thanks to the definitions
on Figure A.3. By Equation 5, as last(h, j) is pending, we deduce that
(tr(w[x]), tr(e)) ∈ coρ′ . Therefore, as so ∪ wr ⊆ coρ = coρ′ , we conclude that
so′ ∪ wr′ ⊆ coρ′ .

– commit, abort: In this case, e = endlast(h, j),
coρ′ ↾T\{last(h,j)}×T\{last(h,j)}= coρ ↾T\{last(h,j)}×T\{last(h,j)}, so′ = so and
wr′ = wr. Thus, to prove that so′ ∪ wr′ ⊆ coρ′ we only need to discuss
about last(h, j). By Lemma 1, last(h, j) is so′ ∪ wr′-maximal. Hence, we
focus on proving that for any transaction t′ s.t. (t′, last(h, j)) ∈ so′ ∪ wr′,
(t′, last(h, j)) ∈ coρ′ . Any such transaction t′ must be completed by
Lemma 1. However, by the definition on Figure A.1, we know that
T(e) > T(end(t′)), so (t′, last(h, j)) ∈ coρ′ by Equation 5. Thus,
so′ ∪ wr′ ⊆ coρ′ .

⊓⊔

Lemma 4. For every total run ρ, the history(ρ) is consistent.

Proof. Let ρT be a total run. By Lemma 2, history(ρT) is a full history. Thus, to
prove that history(ρ) is consistent, by Definition 6, we need to show that there

30 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

exists a commit order co that witnesses its consistency. We prove by induction
on the length of a prefix ρ of a total run ρT that the relation coρ defined in
Equation 5 is a commit order that witnesses history(ρ)’s consistency. Note that
by Lemma 3, the relation coρ is indeed a commit order.

The base case, where ρ is composed only by an initial configuration is im-
mediate as in such case wr = ∅. Let us suppose that for every run of length at
most n the property holds and let ρ′ a run of length n + 1. As ρ′ is a sequence
of configurations, there exist a reachable run ρ of length n, a session j and a
rule r s.t. r = rule(ρ, j, ρ′). Let us call h = (T, so,wr), h′ = (T ′, so′,wr′) and e
to history(ρ), history(ρ′) and the last event in po-order belonging to last(h, j)
respectively. By induction hypothesis, coρ is a commit order that witnesses h’s
consistency. To conclude the inductive step, we show that for every possible rule
r s.t. r = rule(ρ, j, ρ′), coρ′ is a commit order witnessing h′’s consistency.

By contradiction, let suppose that coρ′ does not witness h′’s consistency.
Then, there exists a variable x, a read event r, an axiom a ∈ ι and two com-
mitted transactions t1, t2 s.t. (t1, e) ∈ wrx, t2 writes x, vis

coρ′
a (t2, r, x) holds

in h′ but (t1, t2) ∈ coρ′ ; where ι = I(begin(e)). Thus, if we prove that such
dependencies can be seen in h using coρ, we obtain a contradiction as coρ
witnesses h’s consistency. Note that as shown during the proof of Lemma 3,
coρ′ ↾T\{last(h,j)}×T\{last(h,j)}= coρ ↾T\{last(h,j)}×T\{last(h,j)}; so we simply
prove that last(h, j) cannot be t1, t2, tr(r) or any intermediate transaction
causing vis

coρ′
a (t2, r, x) to hold in h′.

– local, if-false, if-true: As h = h′ and coρ′ = coρ, this case is impossible.
– begin: In this case, coρ′ = coρ ∪ {(t′, last(h′, j)) | t′ ∈ T}. By

Lemma 3, last(h′, j) is (so′ ∪ wr′)-maximal, so last(h′, j) ̸= t1. Moreover,
reads(last(h′, j)) = ∅, so r ̸= reads(last(h′, j)). In addition, last(h, j) ̸= t2
as writes(last(h, j)) = ∅.
• a = Serializability,Prefix or Read Committed: In all cases, the axioms do

not relate any other transactions besides t1, t2 and tr(r), so this case is
impossible.

• a = Conflict: In this case, last(h, j) ̸= t4 as it is coρ′ -maximal; so this
case is also impossible.

– insert: In this case, coρ′ = coρ. Moreover, reads(T ′) = reads(T),
writes(T ′) = writes(T), so′ = so and wr′ = wr. Thus, this case is also im-
possible.

– select, update, delete: In this case, coρ′ = coρ, so′ = so, ∀x ∈ Keys
s.t. w[x] = ⊥, wr′x = wrx and ∀x ∈ Keys s.t. w[x] ̸= ⊥, wr′x = wrx ∪
{(w[x], e)}. As last(h, j) is pending, by Lemma 3, last(h, j) ̸= t1 as it
is (so′ ∪ wr′)-maximal. Moreover, as writes(last(h, j)) = ∅, last(h, j) ̸=
t2. Then, we analyze if last(h, j) can be tr(r) (and thus, r = e) or any
intermediate transaction. Note that for all three isolation levels we study,
readFrom returns the value written by the transaction with the last commit
timestamp for a given snapshot time. Hence, as (t1, r) ∈ wrx and (t2, tr(r)) ∈
coρ, we deduce that Tρ(commit(t2)) > Tρ(begin(last(h, j))). We continue
the analysis distinguishing between one case per axiom:

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 31

• a = Serializability: As ρ′ is a prefix of a total run ρT , there exists runs
ρ̂, ρ̂′ s.t. rule(ρ̂, j′, ρ̂′) is either commit or abort and both a prefix of ρT ;
where j′ is the session of tr(r). Without loss of generality, we can assume
that ρ̂ and ρ̂′ have minimal size; so last(history(ρ̂), j′) = tr(r). As ρT is
total and ρ̂′ is a prefix of ρT , validateι(history(ρ̂,Tρ̂′ , tr(r))) holds.
By the monotonicity of T, Tρ′ ⊆ Tρ̂′ . Hence, as (t1, r) ∈
wrx and Tρ̂′(commit(t1)) < Tρ̂′(commit(t2)), by the definitions of
Figure A.2 and Figure A.3 we deduce that Tρ̂′(begin(tr(r))) <
Tρ̂′(commit(t2)). However, as Tρ̂′(begin(tr(r))) < Tρ̂′(commit(t2)) <
Tρ̂′(end(tr(r))), tr(r) reads x, t2 writes x; we conclude that
validateSER(history(ρ̂

′),Tρ̂′ , tr(r)) does not hold; so this case is impossi-
ble.

• a = Conflict: In this case, last(h, j) cannot be an intermediate transac-
tion nor tr(r) as writes(last(h, j)) = ∅; so this case is also impossible.

• a = Prefix: In this case, last(h, j) cannot be an intermediate transaction
as by Lemma 1, last(h, j) is so′ ∪ wr′-maximal. Thus, last(h, j) must
be tr(r) and e = r. Therefore, there exists a transaction t4 s.t. (t2, t4) ∈
coρ′∗ and (t4, last(h, j)) ∈ (so′ ∪ wr′). Note that t4 must be committed
and that Tρ′(commit(t4)) < Tρ′(begin(last(h, j))). Hence, as (t2, t4) ∈
coρ′∗ and (t1, t2) ∈ coρ′ and they are both committed, we deduce that
Tρ′(commit(t2)) < Tρ′(commit(t4)) < Tρ′(begin(last(h, j))). However,
this contradicts that Tρ′(commit(t2)) > Tρ′(begin(last(h, j))) Thus,
this case is impossible.

• a = Read Committed: In this case, last(h, j) must be tr(r) and in par-
ticular, e = r. As depicted on Figure A.2 and Figure A.3, as (t1, r) ∈
wrx, Sρ′(e) ≤ Tρ′(t1). However, as (t1, t2) ∈ coρ′ , Tρ′(commit(t1)) <
Tρ′(commit(t2)). Hence, as (t2, e) ∈ (so ∪ wr); po∗, there exists an event
e′ ∈ last(h, j) s.t. (e, e′) ∈ po∗ and Tρ′(commit(t2)) < Tρ′(e′). How-
ever, by snapshotRC’s definition, S(e′) ≤ Sρ′(e); so we deduce that
Tρ′(commit(t1)) < Tρ′(commit(t2)) < Sρ′(e). This contradicts the defi-
nition of readFrom; so this case is impossible.

– commit, abort: In this case, coρ′ ↾ (T \ {last(h, j)} × T \ {last(h, j)}) =
coρ ↾ (T \ {last(h, j)} × T \ {last(h, j)}), so′ = so, wr′ = wr. First, using
that by induction hypothesis any prefix ρ̃ of ρ is consistent using coρ̃; we
define ρ̃ the prefix of ρ that introduces the read event r. As history(ρ̃) =
(T̃ , s̃o, w̃r) is consistent and (t1, r) ∈ w̃rx; t1 is committed. Hence, by the
definitions of readFrom and snapshotι on Figure A.3 and the rules semantics
on Figure A.2, we deduce that Tρ(commit(t1)) > Tρ(begin(t2)). Next, as
last(h, j) is pending in h, it is so∪wr-maximal. Therefore, it is also so′∪wr′-
maximal; so it cannot play the role of t1. However, it can play the role of t2,
last(h, j) or the role of an intermediate transaction. Let us analyze case by
case depending on the axiom:
• a = Serializability: Two sub-cases arise:

∗ last(h, j) = t2: I this case, t2 writes x must hold. As ρ′ is a prefix of a
total run ρT , there exists runs ρ̂, ρ̂′ s.t. rule(ρ̂, j′, ρ̂′) is either commit

32 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

or abort and both a prefix of ρT ; where j′ is the session of tr(r).
Without loss of generality, we can assume that ρ̂ and ρ̂′ have minimal
size; so last(history(ρ̂), j′) = tr(r). As ρT is total and ρ̂′ is a prefix of
ρT , validateι(history(ρ̂,Tρ̂′ , tr(r))) holds. Note that as (t1, t2) ∈ coρ′

and they are both committed, Tρ̂′(commit(t1)) < Tρ̂′(commit(t2)).
However, tr(r) reads x, t2 writes x and Tρ̂′(begin(tr(r))) <
Tρ̂′(commit(last(h, j))) < Tρ̂′(commit(tr(r))); which contradicts
that validateι(history(ρ̂,Tρ̂′ , tr(r))) holds. In conclusion, this case is
impossible.

∗ last(h, j) = tr(r): In such case, as t1 and t2 are committed,
(t2, last(h, j)) ∈ coρ and (t1, t2) ∈ coρ. Hence, this case is also
impossible as coρ witnesses that h is consistent.

• a = Prefix: In this case, there exists a transaction t4 s.t. (t2, t4) ∈ co∗ρ′

and (t4, tr(r)) ∈ so′ ∪ wr′. As last(h, j) is pending in h, by Lemma 1,
(so ∪ wr)-maximal. Thus, as so′ = so and wr′ = wr, t4 ̸= last(h, j).
Moreover, as (t2, t4) ∈ coρ′∗, t4 is committed and last(h, j) ̸= t4
is the coρ′ -maximal transaction that is committed, t2 ̸= last(h, j).
Hence, last(h, j) = tr(r). However, as so′ = so, wr′ = wr′ and
coρ′ ↾T\{last(h,j)}×T\{last(h,j)}= coρ ↾T\{last(h,j)}×T\{last(h,j)}; we con-
clude that (t1, t2) ∈ coρ, (t2, t4) ∈ coρ

∗ and (t4, last(h, j)) ∈ so ∪ wr;
which contradicts that coρ witnesses h’s consistency, so this case is im-
possible.

• a = Conflict: In this case, there exists a variable y and a transac-
tion t4 s.t. t4 writes y, tr(r) writes y (t2, t4) ∈ co∗ρ′ , (t4, tr(r)) ∈
coρ′ . As last(h, j) is the coρ′ -maximal transaction that is commit-
ted, (t2, tr(r)), (t4, tr(r)) ∈ coρ′ and writes(tr(r)) ̸= ∅, we deduce
that last(h, j) ̸= t2, t4. Hence, last(h, j) must be tr(r) and e =
commit(last(h, j)). On one hand, we observe that as (t4, last(h, j)) ∈
coρ′ and they are both committed, Tρ′(commit(t4)) < Tρ′(e). On the
other hand, as (t2, t4) ∈ co∗ρ′ and Tρ′(begin(tr(r))) < Tρ′(commit(t2));
we conclude that Tρ′(begin(tr(r))) < Tρ′(commit(t4)). In conclusion,
we obtain that validateSI(h′,Tρ′ , last(h, j)) does not hold due to the ex-
istence of t4; which contradict the hypothesis, so this case is impossible.

• a = Read Committed: In this case, r ̸= e as r is a read event and e is not,
and (t2, r) ∈ (so′∪wr′); po′∗. Hence, as so′ = so,wr′ = wr and po′ = po∪
{(e′, e) | e′ ∈ last(h, j)}; (t2, r) ∈ (so∪wr); po∗. Finally, as last(h, j) is
pending in h, last(h, j) ̸= t2. Thus, as coρ′ ↾T\{last(h,j)}×T\{last(h,j)}=
coρ ↾T\{last(h,j)}×T\{last(h,j)}; we deduce that (t1, t2) ∈ coρ. However,
this contradicts that coρ witnesses h’s consistency; so this case is also
impossible.

As every possible case is impossible, we deduce that the hypothesis, coρ′

does not witnesses h′’s consistency is false; so we conclude the proof of the
inductive step.

⊓⊔

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 33

B Proofs of Theorems 2 to 5

B.1 Complexity analysis of Algorithms 1 and 2 (Proof
of Theorem 2)

For a given history h, Algorithm 1 computes necessary and sufficient conditions
for an execution of h ξ = (h, co) to be consistent. It computes a bigger relation
pcores that includes co and any other dependency between transactions that
can be deduced from the isolation configuration. Algorithm 1 decides if co is a
commit order witnessing consistency of the history (Lemma 5) and it runs in
polynomial time (Lemma 7).

Lemma 5. For any full history h = (T, so,wr), the execution ξ = (h, co) is
consistent if and only if pcores = saturate(h, co) is acyclic.

Proof. Let h = (T, so,wr) be a history, ξ = (h, co) be an execution of h and
pcores = saturate(h, co) be the relation obtained thanks to Algorithm 1.

=⇒ Let us suppose that ξ is consistent. As co is acyclic, it suffice to prove
that pcores = co. By contradiction, let us suppose that pcores ̸= co. As co ⊆
pcores (line 2), there exists t1, t2 s.t. (t2, t1) ∈ pcores \ co. In such case, such
tuple must be added in line 8. Hence, there exists x ∈ Keys, e ∈ reads(h) and
v ∈ vis(iso(h)(tr(r))) s.t. t1 = wr−1

x (r) and viscoa (t2, r, x) holds in h. As ξ is
consistent, (t2, t1) ∈ co; which is impossible. Hence, pcores = co.

⇐= Let us suppose that pcores is acyclic. By contradiction, let us suppose
that ξ is not consistent. Then, there exists an read event r s.t. Cco

iso(h)(tr(r))(r) does
not hold. Hence, by Equation (1), there exists v ∈ vis(iso(h)(tr(r))), x ∈ Keys,
t2 ∈ T s.t. v(co)(t2, r, x) hold in h but (t2, t1) ̸∈ co; where t1 = wr−1

x (r). In such
case, Algorithm 1 ensures in line 8 that (t2, t1) ∈ pcores. However, as co ⊆ pcores
(line 2), co is a total order and pcores is acyclic, co = pcores. Thus, (t2, t1) ∈ co;
which is impossible. Thus, ξ is consistent. ⊓⊔

Lemma 6. Let h = (T, so,wr) be a history s.t. iso(h) is bounded by k ∈ N,
x ∈ Keys be a key, t ∈ T be a transaction, r be a read event, pco ⊆ T × T
be a partial order and v be a visibility relation in vis(iso(h)(tr(r))). Evaluating
v(pco)(t, r, x) is in O(|h|k−2).

Proof. As iso(h) is bounded, there exists k ∈ N s.t. |vis(iso(h)(t))| ≤ k. Hence, the
number of quantifiers employed by a visibility relation is at most k (and at least
3 according to Equation 1). In addition, for each v ∈ vis(iso(h)(t)) evaluating
each condition v(pco)(t, r, x) can be modelled with an algorithm that employ
k − 3 nested loops, one per existential quantifier employed by v, and that for
each quantifier assignment evaluates the quantifier-free part of the formula.

First, we observe that as WrCons predicate only query information about the
k − 1 quantified events, the size of such sub-formula is in O(k). Next, we notice
that as WHERE predicate can be evaluated in constant time, for every key x and
event w, computing valuewr(x,w) is in O(k ·T). Hence, as k is constant, evaluat-
ing the quantifier-free formula of v is in O(|h|) and thus, evaluating v(pco)(t, r, x)
is in O(|h|k−3 · |h|) = O(|h|k−2). ⊓⊔

34 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

Lemma 7. Let h = (T, so,wr) be a full history, k be a bound on iso(h) and
pco ⊆ T × T be a partial order. Algorithm 1 runs in O(|h|k+1).

Proof. Let h = (T, so,wr) be a full history. Algorithm 1 can be decomposed in
two blocks: lines 4-8 and lines 6-8. Hence, the cost of Algorithm 1 is in O(|Keys| ·
|events(h)| · |T | · U); where U is an upper-bound of the cost of evaluating lines
6-8. On one hand, both |Keys|, |events(h)| and |T | are in O(|h|). On the other
hand, as iso(h) is bounded by k, by Lemma 6, U ∈ O(|h|k−2). Altogether, we
deduce that Algorithm 1 runs in O(|h|k+1). ⊓⊔

Algorithm 2 generalizes the results for RA and RC in [7] for full histories with
heterogeneous saturable isolation configurations; proving that such histories can
be checked in polynomial time.

Theorem 2. Checking consistency of full histories with bounded saturable iso-
lation configurations can be done in polynomial time.

We split the proof of Theorem 2 in two Lemmas: Lemma 8 that proves
the correctness of Algorithm 2 and Lemma 9 that ensures its polynomial-time
behavior.

Lemma 8. For every full history h = (T, so,wr) whose isolation configuration
is saturable, Algorithm 2 returns true if and only if h is consistent.

Proof. Let h = (T, so,wr) a full history whose isolation configuration is saturable
and let pco be the visibility relation defined in line 3 in Algorithm 2.

On one hand, let suppose that h is consistent and let ξ = (h, co) be a con-
sistent execution of h. If we show that pco ⊆ co, we can conclude that Algo-
rithm 2 returns true as co is acyclic. Let (t2, t1) ∈ pco and let us prove that
(t2, t1) ∈ co. As so ∪ wr ⊆ co, by the definition of commit order, we can assume
that (t2, t1) ∈ pco\(so∪wr). In such case, there must exists x ∈ Keys, e ∈ reads(h)
and v ∈ vis(iso(h)(tr(e))) s.t. t2 writes x and v((so ∪ wr)+)(t2, e, x) holds. As
iso(h)(tr(e)) is saturable, v((so ∪ wr)+)(t2, e, x) holds. Hence, as co is a commit
order and (so ∪ wr)+ ⊆ co; v(co)(t2, e, x) also holds. Therefore, as co witnesses
h’s consistency, we deduce that (t2, t1) ∈ co.

On the other hand, let us suppose that Algorithm 2 returns true. Then, pco
must be acyclic by the condition in line 4. Therefore, as pco is acyclic it can
be extended to a total order co. Let us prove that the execution ξ = (h, co)
is consistent. Let x ∈ Keys, t2 ∈ T, e ∈ reads(h) and v ∈ vis(iso(h)(tr(e))) s.t.
t2 writes x and v(co)(t2, e, x) holds. As Algorithm 2 returns true, we deduce
that Algorithm 1 checks the condition at line 7. As iso(h)(tr(e)) is saturable,
v((so ∪ wr)+)(t2, e, x) also holds. Thus, (t2, t1) ∈ pco. As pco ⊆ co, (t2, t1) ∈ co;
so co witnesses h’s consistency.

⊓⊔

Lemma 9. For every full history h whose isolation configuration is bounded,
Algorithm 2 runs in polynomial time with respect O(|h|).

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 35

Proof. Let h = (T, so,wr) be a full history whose isolation configuration is sat-
urable. First, we observe that checking if a graph G = (V,E) is acyclic can be
easily done with a DFS in O(|V |+ |E|). Thus, the cost of checking acyclicity of
both so ∪ wr (line 2) and pco (line 4) is in O(|T | + |T |2) = O(|T |2) ⊆ O(|h|2).
Furthermore, by Lemma 7, the cost of executing Algorithm 1 is in O(|h|k+1);
where k is a bound in iso(h). Thus, checking h’s consistency with Algorithm 2
can be done in polynomial time. ⊓⊔

36 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

B.2 Proof of Theorem 3

Theorem 3. Checking consistency of bounded-width client histories with
bounded isolation configuration stronger than RC and width(h) ≥ 3 is NP-
complete.

The proof of Theorem 3 is structured in two parts: proving that the problem
is in NP and proving that is NP-hard. The first part corresponds to Lemma 10;
which is analogous as the proof of Lemma 18. The second part, based on a
reduction to 1-in-3 SAT problem, corresponds to Lemmas 11, 13 and 17.

Lemma 10. The problem of checking consistency for a bounded width client
history h with an isolation configuration stronger than RC and width(h) ≥ 3 is
in NP.

Proof. Let h = (T, so,wr) a client history whose isolation configuration is
stronger than RC. Guessing a witness of h, h, and an execution of h, ξ = (h, co),
can be done in O(|Keys| · |events(h)|2+ |T |2) ⊆ O(|h|3). By Lemma 5, checking if
ξ is consistent is equivalent as checking if saturate(h′, co) is an acyclic relation.
As by Lemma 7, Algorithm 1 requires polynomial time, we conclude the result.

⊓⊔

For showing NP-hardness, we will reduce 1-in-3 SAT to checking consistency.
Let φ be a boolean formula with n clauses and m variables of the form φ =
n∧

i=1

(v0i ∨ v1i ∨ v2i); we construct a history hφ s.t. hφ is consistent if and only if φ

is satisfiable with exactly only one variable assigned the value true. The key idea
is designing a history with width 3 that is stratified in rounds, one per clause.
In each round, three transactions, one per variable in the clause, “compete” to
be first in the commit order. The one that precedes the other two correspond to
the variable in φ that is satisfied.

First, we define the round 0 corresponding to the variables of φ. For every
variable xi ∈ var(φ), 1 ≤ i ≤ m we define an homonymous key xi that rep-
resents such variable. Doing an abuse of notation, we say that xi ∈ var(φ).
Then, we create two transactions 1i and 0i associated to the two states of xi,
1 and 0. The former contains the event INSERT({xi : 1, 1i : 1}) while the latter
INSERT({xi : 0, 0i : 1}). Both 1i and 0i write also on a special key named 1i and
0i respectively to indicate on the database that they have committed.

Next, we define rounds 1 − n representing each clause in φ. For each clause
Ci := (v0i ∨ v1i ∨ v2i), 1 ≤ i ≤ n, we define the round i. Round i is composed by
three transactions: t0i , t1i and t2i , representing the choice of the variable among
v0i , v

1
i and v2i that is selected in the clause Ci. Transactions tji write on keys vji

and vj+1 mod 3
i to preserve the structure of the clause Ci, as well on the special

homonymous key tji to indicate that such transaction has been executed; in a
similar way as we did in the round 0. For that, we impose that transactions tji
are composed of an event SELECT(λx : eq(x, vji , v

j+1 mod 3
i , vj+2 mod 3

i)) followed
by an event INSERT({vji : 0, vj+1 mod 3

i : 1, tji : −1}).

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 37

The function eq : Rows × Keys3 → {true, false} is described in Equation 6
and assumes that Rows contains two distinct values 0 and 1 and that there is
a predicate val : Rows → {0, 1} that returns the value of a variable in the
database. Intuitively, for any key r, if a, b, c correspond to the three variables in
a clause Ci (possibly permuted), whenever ¬eq(r, a, b, c) holds, we deduce that
the value assigned at key a is 1 while on the other two keys the assigned value
is 0. Moreover, whenever r refers to any of the special keys such as 0i, 1i or tji ,
the predicate eq(r, a, b, c) always holds.

eq(r, a, b, c) =

val(r) ̸= 1 if key(r) = a
val(r) ̸= 0 if key(r) = b ∨ key(r) = c

true if key(r) ∈ {tji | 1 ≤ i ≤ n, 0 ≤ j ≤ 2}
true if key(r) ∈ {1i, 0i | 1 ≤ i ≤ m}
false otherwise

(6)

Finally, we add an initial transaction that writes on every key the value 1.
For that, we assume that Keys contains only one key per variable used in φ as
well as one key per aforementioned transaction. We denote by T the set of all
described transactions as well as by round(t) to the round a transaction t ∈ T
belongs to.

We describe the session order in the history hφ using an auxiliary relation so.
We establish that (1i, 1j), (0i, 0j) ∈ so for any pair of indices i, j, 1 ≤ i < j ≤ m.
We also enforce that (tji , t

j
i+1) ∈ so, for every 1 ≤ i ≤ n, 0 ≤ j, j′ ≤ 2. Finally, we

connect round 0 with round 1 by enforcing that (1m, t01) ∈ so and (0m, t11) ∈ so.
Then, we denote by so to the transitive closure of so. Note that so is a union of
disjoint total orders, so it is acyclic.

For describing the write-read relation, we distinguish between two cases:
keys associated to variables in φ or to a transaction in T . On one hand, for
every key xi, 1 ≤ i ≤ m, we define wrxi = ∅. On the other hand, for every key
x associated to a transaction tx and every read event r in a transaction t, we
impose that (tx, r) ∈ wrx if round(tx) < round(t) while otherwise we declare
that (init, r) ∈ wrx. Then, we denote by wr =

⋃
x∈Keys wrx as well as by hφ to

the tuple hφ = (T, so,wr). A full depiction of hφ can be found in Figure B.1.
We observe that imposing wrx = ∅ on every key x ∈ var(φ) ensures that, for

any witness of hφ, h = (T, so,wr), if (w, r) ∈ wr, then WHERE(r)(valuewr(w, x)) =

0. In particular, this implies that each transaction tji must read key vji from a
transaction that writes 1 as value while it also must read keys vj+1 mod 3

i and
vj+2 mod 3
i from a transaction that writes 0 as value. Intuitively, this property

shows that φ is well-encoded in hφ.
The proof is divided in four steps: Lemma 11 proves that the hφ is a

polynomial-size transformation of φ, Lemma 12 proves that the hφ is indeed
a history and Lemmas 13 and 17 prove that hφ is consistent if and only if φ is
1-in-3 satisfiable.

Lemma 11. hφ is a polynomial size transformation on the length of φ.

38 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

INSERT({x1 : 1, 11 : −1})
11

. . .

INSERT({xk : 1, 1k : −1})
1k

. . .

INSERT({xm : 1, 1m : −1})
1m

SELECT(λr : eq(r, v01 , v
1
1 , v

2
1))

INSERT({v01 : 0, v11 : 1, t01 : −1})
t01

. . .

SELECT(λr : eq(r, v0n, v
1
n, v

2
n))

INSERT({v0n : 0, v1n : 1, t0n : 1})
t0n

INSERT({x1 : 0, 01 : −1})
01

. . .

INSERT({xk : 0, 0k : −1})
0k

. . .

INSERT({xm : 0, 0m : −1})
0m

SELECT(λr : eq(r, v11 , v
2
1 , v

0
1))

INSERT({v11 : 0, v21 : 1, t11 : −1})
t11

. . .

SELECT(λr : eq(r, v1n, v
2
n, v

0
n))

INSERT({v1n : 0, v2n : 1, t1n : −1})
t1n

SELECT(λr : eq(r, v21 , v
0
1 , v

1
1))

INSERT({v21 : 0, v01 : 1, t21 : −1})
t21

. . .

SELECT(λr : eq(r, v2n, v
0
n, v

1
n))

INSERT({v2n : 0, v0n : 1, t2n})
t2n

so

so

so

so

so

so

so

so

so

so

so

so

so

so

so

so

wr0kwrv0
1

wrv1
1

wrv2
1

co

R
ou

nd
0

R
ou

nd
1

R
ou

nd
n

Fig. B.1: Description of the history hφ from Theorem 3. Dashed edges only belong
to a possible consistent witness of hφ, where we assume v01 = xk. Transaction t01
reads v01 , v11 and v21 from round 0; imposing some constraints on the transactions
that write them. Due to axiom RC’s definition, transaction t11 must read v11 from
t01 while transaction t21 must read v11 from t11.

Proof. If φ has n clauses and m variables, hφ employs 6n+2m+1 transactions. As
m ≤ 3n, |T | ∈ O(n). The number of variables, |Keys| = m+|T |, so |Keys| ∈ O(n).
As every transaction has at most two events, |events(hφ)| ∈ O(n). Moreover,
wr ⊆ Keys× T × T and so ⊆ T × T , so |wr| ∈ O(n3) and |so| ∈ O(n2). Thus, hφ

is a polynomial transformation of φ. ⊓⊔

For proving that hφ is a history, by Definition 1 it suffices to prove that
so ∪ wr is an acyclic relation. Indeed, by our choice of wr, for every key x, wr−1

x

is a partial function that, whenever it is defined, associates reads to writes on x.
Hence, from Lemma 12 we conclude that hφ is a history.

Lemma 12. The relation so ∪ wr is acyclic.

Proof. For proving that so ∪ wr is acyclic, we reason by induction on the num-
ber of clauses. In particular, we show that for every pair of transactions t, t′ if
round(t′) ≤ i and (t, t′) ∈ so ∪ wr, then round(t) ≤ i and (t′, t) ̸∈ so ∪ wr.

– Base case: The base case refers to round 0; which contains init and trans-
actions 0j , 1j , 1 ≤ j ≤ m. We observe that transactions in round 0 do not
contain any read event. Hence, (t, t′) ∈ so. In such case, the result immedi-
ately holds by construction of so.

– Inductive case: Let us suppose that the induction hypothesis holds for every
1 ≤ i ≤ k ≤ n and let us prove it also for k + 1 ≤ n. If round(t′) < k + 1,
round(t′) ≤ k and the result holds by induction hypothesis; so we can assume
without loss of generality that round(t′) = k + 1. By construction of both

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 39

so and wr, if (t, t′) ∈ so ∪ wr, round(t) < round(t′). Hence, round(t) ≤ k.
By induction hypothesis on t, if (t′, t) ∈ so ∪ wr, round(t′) ≤ k < k + 1 =
round(t′); which is impossible. Thus, we conclude that (t′, t) ̸∈ so ∪ wr.

⊓⊔

Lemma 13. If φ is 1-in-3 satisfiable then hφ is consistent.

Proof. Let α : Keys → {0, 1} an assignment that makes 1-in-3 satisfiable. To
construct a witness of hφ we define a write-read relation wr that extends wr and
a total order on its transactions. For that, we first define a total order co between
the transactions in T . In Equation 6 we define two auxiliary relations r̂ and b̂

based on α that totally orders the transactions that belongs to the same round.
For every clause Ci, 1 ≤ i ≤ n let ji be the unique index s.t. α(vjii) = 1. Such

index allow us to order the transactions in the round i: tjii preceding tji+1 mod 3
i

while tji+1 mod 3
i preceding tji+2 mod 3

i . Intuitively, tjii must precede the other two
transactions in the total order as vji is the variable that is satisfied. Then, we
connect every pair of consecutive rounds thanks to relation ĉ1.

For transactions in round 0, we enforce that transactions associated to the
same variable are totally ordered using α. In particular, for every i, 1 ≤ i ≤ m,
0i precedes 1i in b̂ if and only if α(vi) = 1. Then, we connect every pair tuple
in b̂ with relation ĉ2. Finally, we connect init with transactions in round 0 as
well as round 0 with round 1 thanks to relation ĉ3.

r̂ =

{
(tjii , t

ji+1 mod 3
i)

(tji+1 mod 3
i , tji+2 mod 3

i)

∣∣∣∣ 1 ≤ i ≤ n, 0 ≤ ji ≤ 2

α(vjii) = 1

}
b̂ = {(0i, 1i) | xi ∈ Keys ∧ α(xi) = 1} ∪ {(1i, 0i) | xi ∈ Keys ∧ α(xi) = 0}

ĉ1 = {(tji+2 mod 3
i , t

ji+1

i+1) | 1 ≤ i < n, 0 ≤ ji, ji+1 ≤ 2, α(vjii) = 1 = α(v
ji+1

i)}
ĉ2 = {(1i, 0j), (1i, 1j), (0i, 0j), (0i, 1j) | 1 ≤ i < j ≤ m}

ĉ3 = {(init, 01), (init, 11)} ∪ {(1m, tj11), (0m, tj11) | 0 ≤ j1 ≤ 2, α(vj1i) = 1}
(7)

Let co = (r̂∪ ĉ1 ∪ b̂∪ ĉ2 ∪ ĉ3)
+. The proof of Lemma 13 concludes thanks to

Lemmas 14 and 15, Proposition 1 and Corollary 1. First, Lemma 14 proves that
the relation co is a total order between transactions. Then, Lemma 15 shows that
co allow us define h, a witness of hφ. And finally, with the aid of Proposition 1
and Corollary 1 we conclude that h is consistent; so it is a consistent witness of
hφ.

⊓⊔

Lemma 14. The relation co is a total order.

Proof. For proving that co is a total order, we show by induction that if (t, t′) ∈
co and round(t′) ≤ i, then round(t) ≤ i and (t′, t) ̸∈ co.

40 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

– Base case: We observe that by construction of co, t′ ̸= init. We prove
the base case by a second induction that if there exists i′, 1 ≤ i′ ≤ m s.t.
t′ ∈ {0i′ , 1i′} and (t, t′) ∈ co then either t = init or there exists i ≤ i′ s.t.
t ∈ {0i, 1i} and (t′, t) ̸∈ co.
• Base case: Let us suppose that α(x0) = 1 as the other case is symmetric.

If t = init, (t′, t) ̸∈ co as init is minimal in co. If not, then t′ = 11 and
t = 01. We conclude once more that (t, t′) ̸∈ co as 01 only have init as
a co-predecessor; which is co-minimal.

• Induction hypothesis: Let us suppose that the induction hypothesis holds
for every 1 ≤ i ≤ k ≤ m and let us prove it also for k + 1 ≤ m.
If i′ < k, we conclude the result by induction hypothesis; so we can
assume that i′ = k. Moreover, as init is co-minimal, we can assume
without loss of generality that t ̸= init. Thus, by construction of co,
there must exists i, 1 ≤ i ≤ m s.t. t ∈ {0i, 1i}. In particular, i ≤ i′.
Thus, if i < i′ and (t′, t) would be in co, by induction hypothesis on t
we would deduce that i′ ≤ i < i′; which is impossible. Hence, we can
assume that i′ = i. Let us assume that α(xi) = 1 as the other case
is symmetric. Thus, we deduce that t = 0i and t′ = 1i. We observe
that (t′, t) ̸∈ r̂ ∪ ĉ1 ∪ b̂ ∪ ĉ2 ∪ ĉ3. As T is finite, if (t′, t) ∈ co, there
would exist a transaction t′′ ̸= t′ s.t (t′′, t) ∈ r̂ ∪ ĉ1 ∪ b̂ ∪ ĉ2 ∪ ĉ3 and
(t′, t′′) ∈ co. But in such case, either t′′ = init or there would exists an
integer i′′, 1 ≤ i′′ < i ≤ m s.t. t′′ ∈ {0i′′ , 1i′′}; which is impossible by
induction hypothesis. In conclusion, (t′, t) ̸∈ co.

– Inductive case: Let us suppose that the induction hypothesis holds for every
1 ≤ i ≤ k ≤ n and let us prove it also for k+1 ≤ n. Let thus t, t′ transactions
s.t. round(t)′ ≤ k+1 and (t, t′) ∈ co. If round(t′) < k+1, round(t′) ≤ k and
the result holds by induction hypothesis; so we can assume without loss of
generality that round(t′) = k + 1. By construction of co, round(t) ≤ k + 1.
If round(t) ≤ k and (t′, t) ∈ co, by induction hypothesis on t we obtain that
round(t′) ≤ k < k + 1 = round(t′); which is impossible. Thus, we can also
assume without loss of generality that round(t) = k + 1. In such case, we
observe that ĉ1, b̂ and ĉ1 do not order transactions belonging to the same
round. Hence if (t, t′) ∈ co and (t′, t) ∈ co, we deduce that (t, t′) ∈ r̂ and
(t′, t) ∈ r̂. However, by construction of r̂, this is impossible, so we conclude
once more that (t′, t) ̸∈ co.

⊓⊔

Next, we construct a full history h using co that extends hφ. For every key
x and read event r, we define wr

x as follows:

wr
x = max

co
{t ∈ T | t writes x ∧ (t, r) ∈ co} (8)

Observe that wr
x is well-defined as co is a total order and init write every key.

For each key x ∈ var(φ), we define the relation wrx = {(wr
x, r) | r ∈ reads(h)}.

Then, we define the relation wr =
⋃

x∈var(φ) wrx ∪ wr as well as the history

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 41

h = (T, so,wr). Lemma 15 proves that h is indeed a full history while Lemma 16
shows that h is a witness of hφ.

Lemma 15. h is a full history.

Proof. For showing that h is a full history it suffices to show that so ∪ wr is
acyclic. As co is a total order and wr \ wr ⊆ co, proving that so ∪ wr ⊆ co
concludes the result. First, we prove that so ⊆ co. Let t, t′ be transactions
s.t. (t, t′) ∈ so. In such case, round(t) ≤ round(t′); and they only coincide if
round(t) = round(t′) = 0. Three cases arise:

– round(t) = round(t′) = 0: As (t, t′) ∈ ĉ2, we conclude that (t, t′) ∈ co.
– round(t), round(t′) > 0: As round(t), round(t′) > 0 and round(t) ≤

round(t′), by construction of so we deduce that round(t) < round(t′). As co
is transitive, we can assume without loss of generality that round(t′) =
round(t) + 1. Therefore, there exists i, j, 1 ≤ i < n, 0 ≤ j ≤ 2 s.t.
t = tji and t′ = tji+1. Let ji, ji+1, 0 ≤ ji, ji+1 ≤ 2 be the integers s.t.
α(vjii) = 1 = α(v

ji+1

i+1). In such case, we know that (tji , t
ji+2 mod 3
i) ∈ r̂∗,

(tji+2 mod 3
i , tjii+1) ∈ ĉ1 and (t

ji+1

i+1 , t
j+1
i+1) ∈ r̂∗. Hence, as co is transitive,

(t, t′) ∈ co.
– round(t) = 0, round(t′) > 0: In this case, as round(t) = 0, there exists i, 1 ≤

i ≤ m s.t. xi ∈ var(φ), t ∈ {0i, 1i}. We assume without loss of generality
that t = 1i as the other case is symmetric. In addition, as round(t′) > 0 and
(t, t′) ∈ so, there exists i, 1 ≤ i ≤ n s.t. t′ = t0i . We rely on the two previous
proven cases to deduce the result: as (0i, 0m) ∈ so ⊆ co, (0m, tj00) ∈ ĉ3,
(tj00 , t00) ∈ r̂∗ and (t00, t

0
i) ∈ so ⊆ co, we conclude that (t, t′) ∈ co.

Next, we prove that wr ⊆ co. Let r be a read event and w be a write event s.t.
(w, r) ∈ wr. Then, there exists i, i′, 1 ≤ i < i′ ≤ n and j, j′, 0 ≤ j, j′ ≤ 2 s.t. w =

tji and tr(r) = tj
′

i′ . Let ji′−1, ji′ , 0 ≤ ji′−1, ji′ ≤ 2 be the integers s.t. α(vji′−1

i′−1) =

1 = α(vj
′

i′). In such case, we know that (tji , t
j
i′−1) ∈ so∗, (tji′−1, t

ji′+2 mod 3
i′−1) ∈ r̂∗,

(t
ji′+2 mod 3
i′−1 , tjii′) ∈ ĉ1 and (t

ji′
i′ , t

j′

i′) ∈ r̂∗. As so ⊆ co and co is transitive, we
conclude that (w, r) ∈ co. ⊓⊔

We show that h is indeed a full history, that is a witness of hφ and that also
witness hφ’s consistency.

Lemma 16. The history h is a witness of hφ.

Proof. By Lemma 15 h is a full history. Hence, for proving that h is a witness of
hφ, we need to show that for every key x ∈ Keys and every read r, if wr−1

x (r) ↑,
WHERE(r)(valuewr(w

r
x, x)) = 0. Note that by construction of hφ, such cases co-

incide with x ∈ var(φ). In addition, we observe that if r is a read event, there
exists indices 1 ≤ i ≤ n, 0 ≤ j ≤ 2 s.t. r ∈ tji . Thus, by Equation 6, we only need
to prove that WHERE(r)(valuewr(wr

x, x)) = 0 whenever x is v0i , v
1
i or v2i .

We prove as an intermediate step that in each round, every key has the same
value in h. For every round i and key x ∈ var(φ), we consider the transaction

42 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

tix = maxco{t | t writes x∧ round(t) ≤ i}. We prove by induction on the number
of the round that valuewr(tix, x) = valuewr(t

0
x, x) = (x, α(x)).

– Base case: The base case, i = 0, is immediately trivial. Note that in this case
valuewr(t

0
x, x) = α(x).

– Inductive case: Let us assume that valuewr(t
i−1
x , x) = valuewr(t

0
x, x) and

let us prove that valuewr(tix, x) = (x, α(x)). Note that in round i only keys
v0i , v

1
i and v2i are written; so for every other key x, tix = ti−1

x and by induction
hypothesis, valuewr(tix, x) = (x, α(x)). Let thus j, 0 ≤ j ≤ 2 s.t. α(vji) = 1.
In this case, ti

vj
i

= ti
vj+2 mod 3
i

= tj+2 mod 3
i and ti

vj+1 mod 3
i

= tj+1 mod 3
i . Hence,

we can conclude the inductive step as:

valuewr(t
j+2 mod 3
i , vji) = (vji , 1) = (vji , α(v

j
i))

valuewr(t
j+1 mod 3
i , vj+1 mod 3

i) = (vj+1 mod 3
i , 0) = (vj+1 mod 3

i , α(vj+1 mod 3
i))

valuewr(t
j+2 mod 3
i , vj+2 mod 3

i) = (vj+2 mod 3
i , 0) = (vj+2 mod 3

i , α(vj+2 mod 3
i))

We can thus conclude that h is a witness of hφ. Let i, j, 1 ≤ i ≤ n, 0 ≤ j ≤ 2

be indices s.t. α(vji) = 1. For simplifying notation, we denote by t0, t1, t2 to the
transactions tji , t

j+1 mod 3
i and tj+2 mod 3

i respectively. We also denote by r0, r1, r2
to the read events that belong to t0, t1 and t2 respectively as well by v0, v1, v2 to
the keys associated to t0, t1 and t2 respectively. For every key x ̸= v0, v1, v2 and
for every transaction t that writes x, WHERE(rj)(valuewr(t, x)) = 0, 0 ≤ j ≤ 2; so
we can focus only on keys v0, v1 and v2. Three cases arise:

– Transaction t0: Let thus x be a key in {v0, v1, v2}. By construction of hφ and
co, t0 reads x from ti−1

x . As proved before, valuewr(ti−1
x , x) = (x, α(x)) and

α(x) = (x, 1) if and only if x = v0. Hence, as WHERE(r0)(valuewr(ti−1
x , x)) = 0

we conclude that WHERE(r0)(valuewr(wr0
x , x)) = 0.

– Transaction t1: In this case, t1 reads v2 from ti−1
v2 and it reads v0 and v1

from t0. On one hand, valuewr(ti−1
v2 , v2) = (v2, α(v2)) = (v2, 0). Thus, as

WHERE(r1)(t
i−1
v2) = 0, we conclude that WHERE(r1)(valuewr(w

r1
v2 , v2)) = 0.

On the other hand, by construction of hφ, WHERE(r1)(valuewr(t0, v0)) =
WHERE(r1)(valuewr(t0, v1)) = 0. Thus, the result hold.

– Transaction t2: In this case, t2 read v0 from t0 and v1 and v2 from t1. By con-
struction of hφ both WHERE(r2)(valuewr(t0, v0)), WHERE(r2)(valuewr(t1, v1))
and WHERE(r2)(valuewr(t1, v2)) are equal to 0; so we conclude the result.

⊓⊔

We conclude the proof showing that the execution ξ = (h, co) is a consistent
execution of hφ. We observe that by construction of wr and co, h satisfies SER
using co. Corollary 1 proves that iso(hφ) is weaker than SER; which allow us to
conclude that so h satisfies iso(hφ). In other words, that h is consistent.

Proposition 1. Let h = (T, so,wr) be a full history, ξ = (h, co) be an execution
of h, r be a read event, t2 be a transaction distinct from tr(r), x be a key and
v ∈ vis(iso(h)(tr(e))). If v(t2, r, x) holds in ξ, then (t2, tr(r)) ∈ co.

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 43

Proof. The proposition is result of an immediate induction on the definition of
v. The base case is po, so,wr ⊆ co, which holds by definition. The inductive
case follows from the operators employed in Equation 3: union, composition and
transitive closure of relations; which are monotonic. ⊓⊔

As a consequence of Proposition 1 and Serializability axiom definition, we
obtain the following result.

Corollary 1. Any isolation level is weaker than SER.

Lemma 17. If hφ is consistent then φ is 1-in-3 satisfiable.

Proof. If hφ is consistent, there exists a consistent witness of hφ h = (T, so,wr).
As h is consistent and iso(h) is stronger than RC, there exists a consistent ex-
ecution of h, ξ = (h, co). Let αh : var(φ) → {0, 1} s.t. for every variable
vj , 1 ≤ j ≤ m, αh(vj) = 1 if and only if (0j , 1j) ∈ co. We show that φ is
1-in-3 satisfiable using α.

As an intermediate step, we prove that αh describes the value read by
any transaction in h. For every i, 0 ≤ i ≤ n and key x ∈ var(φ), let
tix = maxco{t | t writes x ∧ round(t) ≤ i}. We prove by induction that for
every i, 0 ≤ i ≤ n (1) valuewr(t

i
x, x) = (x, α(x)), (2) for any read event r

from a transaction t s.t. round(t) ≤ i, if (w, r) ∈ wrx, then w coincides with
maxco{t ∈ T | t writes x ∧ (t, tr(r)) ∈ co} and (3) if i > 0, α(vji) = 1 if and only
if (tji , t

j+1 mod 3
i) ∈ co and (tj+1 mod 3

i , tj+2 mod 3
i) ∈ co.

– Base case: Let j, 1 ≤ j ≤ m be the integer s.t. x = vj . In such case, (1)
holds as t0x = 1j if and only if α(vj) = 1; and in such case, valuewr(t0x, vj) =
(vj , α(vj)). Also (2) trivially holds as there is no read event in a transaction
belonging to round 0. Finally, (3) also trivially holds as i = 0.

– Inductive case: We assume that (1), (2) and (3) hold for round i− 1 and let
us prove it for round i. Let j the index of the co-minimal transaction among
t1i , t

2
i , t

3
i . We denote by t0, t1, t2 to tji , t

j+1 mod 3
i and tj+2 mod 3

i respectively,
by r0, r1, r2 to the unique read event in t0, t1 and t2 respectively and by
v0, v1 and v2 to the keys associated to t0, t1 and t2 respectively.
Let thus x ∈ var(φ) be a key, t be a transaction among t0, t1, t2 and let wt

x be
a transaction s.t. (wt

x, t) ∈ wrx. As round(ti−1
x) < round(t), (ti−1

x , t) ∈ wrti−1
x

.
Hence, as h satisfies RC, either wt

x = ti−1
x or round(wt

x) = i.
First we prove (3) analyzing t0. As (t0, t1) ∈ co and (t0, t2) ∈ co and wr ⊆ co
we deduce that wt

x = ti−1
x . In such case, as (1) holds by induction hypothesis

and WHERE(r0)(valuewr(t
i−1
x , x)) = 0, we conclude that α(x) = 1 if x = v0

and α(x) = 0 if x = v1, v2.
For proving (2) we analyze three cases depending on t:
• t = t0: As proved before, if t = t0, wt

x = ti−1
x . By definition of ti−1

x , (2)
holds.

• t = t1: As t0 only writes v0 and v1 and (t1, t2) ∈ co we deduce that for
every key x ̸= v0, v1, wt1

x = ti−1
x ; which immediately implies (2). As

(3) holds for round i, we know that α(v0) = 1 and α(v1) = 0. Thus,
if x = v0, v1, WHERE(r2)(valuewr(ti−1

x , x)) = 1; so (ti−1
x , t1) ̸∈ wrx. In

conclusion, wt1
x = t0; which implies (2) by definition of t0.

44 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

• t = t2: As t0, t1 only write v0, v1 and v2 we deduce that for every other
key, wt2

x = ti−1
x ; which implies (2). Otherwise, we analyze the three sub-

cases arising:
∗ x = v2: In this case, t0 does not write v2; so there is only two options

left, ti−1
x and t1. As (3) holds for round i, α(v2) = 0. Thus, as by

induction hypothesis (2) holds for round i − 1, valuewr(ti−1
v2 , v2) =

(v2, 0) and hence, WHERE(r2)(valuewr(ti−1
v2 , v2)) = 1. Therefore, wt2

v2
must be t1; which implies (2).

∗ x = v0: Once again, there is only two possible options as t1 does not
write v0. As (3) holds for round i, α(v0) = 1. Thus, as by induction
hypothesis (2) holds for round i− 1, valuewr(ti−1

v0 , v0) = (v0, 1) and
hence, WHERE(r2)(valuewr(ti−1

v0 , v0)) = 1. Therefore, wt2
v0 must be t0;

which implies (2).
∗ x = v1: We observe in this case that valuewr(t0, v1) = (x, 1); so
WHERE(r2)(valuewr(t0, v1)) = 1. Therefore, there is only two pos-
sible options, t1 and ti−1

x . As h satisfies RC and (t1, t2) ∈ wrv2 ,
if (ti−1

x , t2) ∈ wrv1 , we deduce that (t1, t
i−1
x) ∈ co. However, as

round(ti−1
x) < round(t1), (ti−1

x , t1) ∈ wrti−1
x

; which is impossible as
wr ⊆ co. Thus, we conclude that wt2

v2 = t1; which implies (2).
For proving (1) we observe that for every key x ̸= v0, v1, v2, tix = ti−1

x and by
induction hypothesis we conclude that valuewr(tix, x) = (x, α(x)). Moreover,
as (t0, t1) ∈ co and (t1, t2) ∈ co, tiv0 = tiv2 = t2 and tiv1 = t1. In addition, as
(3) holds, α(v0) = 1 and α(v1) = α(v2) = 0. This allow us to conclude (1)
also for the keys v0, v1 and v2; so the inductive step is proven.

After proving (1), (2) and (3) we can conclude that φ is 1-in-3 satisfiable.
For every round i, we observe that by (1) valuewr(tix, x) = (x, α(x)). Moreover,
as (2) holds, (tix, t

i
0) ∈ wrx; where ti0 is the first transaction in co among the

transactions in round i. As h is a witness of hφ, WHERE(ri0)(valuewr(tix, x)) = 0;
where ri0 is the read event of ti0. Hence, exactly one variable among v0i , v

1
i and

v2i has 1 as image by α. Therefore, φ is 1-in-3 satisfiable.
⊓⊔

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 45

B.3 Proof of Theorem 4

Theorem 4. Checking consistency of partial observation histories with bounded
isolation configurations stronger than RC is NP-complete.

The structure of the proof is divided in two parts: proving that the problem is
NP and proving that it is NP-hard. The fist part, corresponding to Lemma 18, is
straightforward as, for any client history, we simply guess a suitable witness and a
total order on its transactions for deducing its consistency applying Definition 6.
The second part, corresponding to Lemmas 24 and 25 is more complicated. We
use a novel reduction from 3-SAT. We encode a boolean formula φ in a history
hφ, s.t. hφ is consistent iff φ is satisfiable. We first prove that the problem is
indeed in NP (Lemma 18).

Lemma 18. The problem of checking consistency for a client history with an
isolation configuration stronger than RC is in NP.

Proof. Let h = (T, so,wr) a client history whose isolation configuration is
stronger than RC. Guessing a witness of h, h, and an execution of h, ξ = (h, co),
can be done in O(|Keys| · |events(h)|2+ |T |2) ⊆ O(|h|3). By Lemma 5, checking if
ξ is consistent is equivalent as checking if saturate(h, co) is an acyclic relation.
As by Lemma 7, Algorithm 1 requires polynomial time, we conclude the result.

⊓⊔

For showing NP-hardness, we reduce 3-SAT to the problem of checking con-
sistency of a partial observation history. Note that the problem is NP-hard in
the case where the isolation configuration is not saturable, as discussed in Sec-
tion 4.2, using the results in [7]. Therefore, we only prove it for the case where
the isolation configuration is saturable.

Let φ =
∧n

i=1 Ci a CNF expression with at most 3 literals per clause (i.e.
Ci = l1i ∨ l2i ∨ l3i). Without loss of generality we can assume that each clause
contains exactly three literals and each literal in a clause refers to a different
variable. We denote var(lji) to the variable that the literal lji employs and Vars(φ)
the set of all variables of φ.

We design a history hφ with an arbitrary saturable isolation configuration
encoding φ. Thus, checking φ-satisfiability would reduce to checking hφ’s consis-
tency. Note that as iso(hφ) is saturable, hφ’s consistency is equivalent to checking
pco’s acyclicity; where pco = saturate(hφ, (so∪wr)+). We use the latter char-
acterization of consistency for encoding the formula φ in hφ.

First of all, we consider every literal in φ independently. This means that
even if two literals lji and lj

′

i′ share its variable (var(lji) = var(lj
′

i′)) we will rea-
son independently about them. For that, we employ keys var(lji)i and var(lj

′

i′)i′ .
We later enforce additional constraints for ensuring that var(lji)i and var(lj

′

i′)i′

coordinate so assignments on var(lji)i coincide with assignments in var(lj
′

i′)i′ .
For simplicity in the explanation, whenever we talk about a literal l that is
negated (for example l := ¬x), we denote by ¬l to the literal x. Also, we use

46 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

INSERT({var(li)+(i,1) : 1})
. . .
INSERT({var(li)+(i,i−1) : 1})
INSERT({var(li)+(i,i+1) : 1})
. . .
INSERT({var(li)+(i,n) : 1})
INSERT({var(li)−(1,i) : 1})
. . .
INSERT({var(li)−(i−1,i) : 1})
INSERT({var(li)−(i+1,i) : 1})
. . .
INSERT({var(li)−(n,i) : 1})
INSERT({var(cji) : 1})
DELETE(λr : key(r) = var(lji)i)

(a) Transaction tji

INSERT({var(li)−(i,1) : 1})
. . .
INSERT({var(li)−(i,i−1) : 1})
INSERT({var(li)−(i,i+1) : 1})
. . .
INSERT({var(li)−(i,n) : 1})
INSERT({var(li)+(1,i) : 1})
. . .
INSERT({var(li)+(i−1,i) : 1})
INSERT({var(li)+(i+1,i) : 1})
. . .
INSERT({var(li)+(n,i) : 1})
INSERT({var(cji) : 1})
INSERT({var(cj−1 mod 3

i) : 1})
DELETE(λr : key(r) = var(lji)i)

(b) Transaction ¬tji

INSERT({x ∈ A
j
i : 0})

SELECT(λr : true)

(c) Transaction Sj
i

Fig. B.2: Description in full detail of the transactions tji , ¬t
j
i and Sj

i described in
the proof of theorem 4 assuming sign(tji) = +; where A

j
i is the set of auxiliary

variables for Sj
i . The case where sign(tji) = − is analogous replacing in the first

two instructions of both tji and ¬tji + by − and vice versa.

indistinguishably x when referring to a variable in φ or to a homonymous key
in hφ. In addition, with the aim of simplifying the explanation, we assume here-
inafter that any occurrence of indices i, i′, j, j′ satisfy that 1 ≤ i, i′ ≤ n and
1 ≤ j, j′ ≤ 3.

For every clause Ci = l1i ∨ l2i ∨ l3i , we create nine transactions denoted by tji ,
¬tji and Sj

i . Figure B.2 shows in detail their definition, which we explain and
justify during the following lines. The transaction tji represents the state where lji
is satisfied while ¬tji represents the state where lji is unsatisfied. Transaction Sj

i is
in charge of selecting one of the two states. With this goal on mind, transactions
tji and ¬tji contain a DELETE event that deletes the key var(lji)i while Sj

i contains
a SELECT event that does not read var(lji)i in hφ. By Definition 9, any witnesses
h′ of hφ must read var(lji)i from a transaction that deletes it. As hφ contain
only two transactions that deletes such key (tji and ¬tji), we can interpret that
if Sj

i reads var(lji)i from tji in h′, then lji is satisfied in φ while otherwise it is
not.

For simplifying notation, as transactions tji ,¬t
j
i , S

j
i only have one read event,

we define write-read dependencies directly from transactions instead of their
read events. We also denote by var(tji) and var(¬tji) to the variable var(lji),
associating each transaction with the variable of its associated literal.

We divide the construction of the history hφ in two main parts. In the first
part, we relate transactions tji ,¬t

j
i and Sj

i with the clause Ci, ensuring a satisfy-
ing valuation of clause Ci corresponds to a consistent history when restricted to
its associated transactions. In the second part, we link transactions associated
to different clauses (for example tji with tj

′

i′ , i ̸= i′), for ensuring that valuations

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 47

Sx
i

¬xi

Sz
i

zi

Sy
i

¬yi

xi

yi ¬zi
wrc1i

wrc2i

wrc3i

wrxi

wryi

wrzi

co

co

co

(a) No co-cycle when
all literals are satis-
fied

Sx
i

¬xi

Sz
i

zi

Sy
i

¬yi

xi

yi ¬zi
wrc1i

wrc2i

wrc3iwrxi

wryi

wrzi
co

co

co

(b) No co-cycle when
two literals are satis-
fied

Sx
i

¬xi

Sz
i

zi

Sy
i

¬yi

xi

yi ¬zi
wrc1i

wrc2i

wrc3iwrxi

wryi

wrzi
co

co

co

(c) No co-cycle when
only one literal is
satisfied

Sx
i

¬xi

Sz
i

zi

Sy
i

¬yi

xi

yi ¬zi
wrc1i

wrc2i

wrc3iwrxi

wryi

wrzicoco

co

(d) One co-cycle ap-
pears when no literal
is satisfied

Fig. B.3: Transformation of the clause Ci = xi ∨ yi ∨¬zi into part of the history.
Solid wr-edges in hφ represent the constraints of the clause while dashed wr-
edges, belonging only to the witnesses of hφ, reflect the literals satisfied.

are consistent between clauses (i.e. a variable is not assigned 1 in clause Ci and
0 in clause Ci′).

For the first part of hφ’s construction, we observe that “at least one literal
among l1i , l2i or l3i must be satisfied” is equivalent to “¬l1i , ¬l2i and ¬l3i cannot be
satisfied at the same time”. Thus, we add write-read dependencies to the history
in such a way that if the three values that do not satisfy the clause are read by
a witness h′ of hφ, axiom Read Committed forces h′ to be inconsistent. We use
an auxiliary key cji written by transactions tji , ¬t

j
i and ¬t(j+1) mod 3

i and read
by transaction Sj

i ; enforcing (¬t(j+1) mod 3
i , Sj

i) ∈ wrcji
. Thanks to variable cji , if

(¬tji , S
j
i) ∈ wr

var(lji)i
in such witness h′, for any consistent execution of h′ with

commit order co, (¬tji ,¬t
j+1 mod 3
i) ∈ co. Hence, if h′ is consistent, for every

i there must exist a j s.t.(tji , S
j
i) ∈ wr

var(lji)i
. Otherwise, every commit order

witnessing h′’s consistency would be cyclic; which is a contradiction.
In Figure B.3 we see how such co-cycle arise on any commit order witnessing

hφ’s consistency; where φ contains the clause Ci = xi ∨ yi ∨ ¬zi.

sign(t) =

+ if t = tji ∧ lji = var(lji)

− if t = tji ∧ lji = ¬var(lji)
− if t = ¬tji ∧ lji = var(lji)

+ if t = ¬tji ∧ lji = ¬var(lji)
⊥ otherwise

opsign(t) =

+ if sign(t) = −
− if sign(t) = +
⊥ otherwise

(9)

For the second part of hφ’s construction, we utilize the functions sign and
opsign described in Equation 9. The function sign describes when a literal lji
is positive (i.e. lji = var(lji)) or negative (i.e. lji = ¬var(lji)). If lji is positive, it
assigns to transaction tji the symbol + and to ¬tji the symbol −; while if lji is
negative, the opposite. Such symbol is denoted the sign of a transaction. Hence,
for each transaction ti s.t. sign(ti) ̸= ⊥ (i.e. ti is either tji or ¬tji), we introduce

48 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

¬t1
t1 . . .

¬ti−1
ti−1

¬ti ti
¬ti+1

ti+1

. . .
¬tn

tn

Sj
i

wr
x+
(1,i)

wr
x+
(i−1,i) wr

x+
(i+1,i)

wr
x+
(n,i)

wr
x−
(1,i)

wr
x−
(i−1,i)

wr
x−
(i+1,i)

wr
x−
(n,i)

wrxi

co

co

co
co

Fig. B.4: Commit edges between transactions of different sign associated to vari-
able x = var(lji). Superindices j are omitted for legibility. For simplicity on the
Figure, we assume that sign(tk) = + and sign(¬tk) = −; the situation gener-
alizes for any other setting. If Sj

i would read xi from ti in a witness h′ of hφ

(respectively ¬ti), for every i′ ̸= i (ti,¬ti′) ∈ co, (resp. (¬ti, ti′) ∈ co).

n− 1 INSERT events, one per key var(lji)
sign(ti)
(i,i′) , i′ ̸= i, that write on that exact

key. Those INSERT events are read by transaction Sj′

i′ (i.e. (ti, S
j′

i′) ∈ wrx, where
x = var(lji)

sign(ti)
(i,i′)). In addition, we introduce in ti another n− 1 INSERT events

that writes the key var(ti)
opsign(ti)
(i′,i) . Figure B.2 describe the full description of

transactions tji and ¬tji .

The auxiliary keys var(lji)
sign(ti)
(i,i′) and var(lji)

opsign(ti)
(i,i′) are key to ensure consis-

tency between clauses. Intuitively, if Sj
i reads var(lji)i from a positive transaction

t in a consistent execution of hφ, ξ = (h, co), and t′ is a negative transaction
s.t. var(t) = var(t′), then (t, t′) ∈ co; where h is a witness of hφ. Hence, any
other transaction Sj′

i′ must read var(lj
′

i′)i′ also from a positive transaction in h;
otherwise co would be cyclic, which is impossible as co must be a total order.
This phenomenon, that is depicted in Figure B.4, ensures that var(lji) is always
read from transactions with the same sign. In conclusion, we can establish con-
sistent valuation of the variables of φ based on the write-read dependencies of
the witnesses of hφ.

We introduce a succint final part on the construction of hφ for technical
reasons. Indeed, any witness of hφ ensures that wr−1

x is a total function for
any x ∈ Keys. We impose a few additional constraints on hφ so we can better
characterize the witnesses of hφ. First, we assume that there exists an initial
transaction that inserts, for every key x, a dummy value different from †x (for
example 0). Then, we impose that tji and ¬tji read every key x from the initial
transaction. Finally, for the case of transactions Sj

i , we define the set of auxil-
iary keys A

j
i that contain every key different from cji , var(l

j
i)i, var(l

j
i)

+
(i′,i) and

var(lji)
−
(i′,i). We introduce on Sj

i an INSERT event that writes every key in A
j
i

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 49

with an abritrary value (for example, 0). Hence, Sj
i reads every key in Aj

i from
its own insert and no extra write-read dependency is required.

With this technical addendum, we define hφ = (T, so,wr) as the conjunction
of all transactions and relations described above. In such case, the only informa-
tion missing in hφ to be a full history is wr−1

var(lji)i
(Sj

i). We assume that no more
variables than the ones aforementioned belong to Keys.

The proof of NP-hardness goes as follows: first, we prove in Lemma 19 that
hφ is indeed a polynomial transformation of φ. Then, as iso(hφ) is saturable, by
Theorem 2 we observe that it suffices to prove that φ is satisfiable if and only
there is a witness h of hφ s.t. the relation pcoh = saturate(h, (so ∪ wr)+) is
acyclic. For simplifying the reasoning when iso(hφ) has an arbitrary isolation
configuration, we rely on Lemma 20 for reducing the proof at the case when
iso(hφ) = RC.

Hence, we prove on Lemma 24 that on one hand, whenever φ is satisfiable
we can construct a witness h of hφ based on such assignment for which pcoh is
acyclic. For that, we require Lemmas 21 to 23. On the other hand, whenever there
is a consistent witness h of hφ, we prove on Lemma 25 that we can construct
a satisfying assignment of φ based on the write-read dependencies in h. In this
case, we require once more Lemma 21.

Lemma 19. The history hφ has polynomial size on the length of φ.

Proof. Let φ a CNF with n clauses and 3 literals per clause. Then, as φ has 3n
literals, hφ employs 9n transactions plus one additional one (init). The number
of keys, |Keys|, is quadratic on n as transactions tji and ¬tji insert O(n) keys while
Sj
i only insert keys also inserted by other transactions. Moreover, the number

of events in hφ, events(hφ) is in O(|Keys|) = O(n2) as transactions tji ,¬t
j
i have

one INSERT event per keys inserted (and they insert O(n) keys) and one DELETE

event and transactions Sj
i only have two events. In addition, so ⊆ T × T and

wr ⊆ Keys× events(hφ)× events(hφ); so their size is also polynomial on n. Thus,
hφ is a polynomial transformation of φ. ⊓⊔

One caveat of hφ is that its isolation configuration is unknown. Lemma 20
express that, in the particular case of hφ, all saturable isolation levels stronger
than RC are equivalent (they impose the same constraints). Hence, thereinafter
we can assume without loss of generality that iso(hφ) = RC.

Lemma 20. Under history hφ, iso(hφ) is equivalent to RC (i.e. iso(hφ) is both
weaker and stronger than RC.)

Proof. Let h = (T, so,wr) be any witness of hφ and let hRC be the history that
only differ with h on its isolation configuration (iso(hRC) = RC instead of iso(h)).
We prove that h and hRC are simultaneously consistent or inconsistent.

As both iso(hφ) and RC are saturable, by Theorem 2, the proof is equivalent
to prove that pcoh and pcoRC are simultaneously cyclic or acyclic; where pcoh =

saturate(h, (so∪wr)+) and pcoRC = saturate(hRC, (so∪wr)+). We prove that
the two relations coincide, which allow us to conclude the result.

50 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

We observe that as iso(h) is weaker than RC, pcoRC ⊆ pcoh. Thus, it suffices
to prove that pcoh ⊆ pcoRC. Let t, t′ be two transactions s.t. (t, t′) ∈ pcoh and
let us prove that (t, t′) ∈ pcoRC. As (so ∪ wr)+ ⊆ pcoRC; we can assume without
loss of generality that (t, t′) ∈ pcoh \ (so ∪ wr)+. In such case, there exists r ∈
reads(h), x ∈ Keys and v ∈ vis(iso(h)(tr(r))) s.t. t′ = wrx

−1(r) and v(pcoh)(t, r, x)

holds in h. As iso(h) is saturable, (t, r) ∈ (so ∪ wr)+.
First, we note that tr(r) ̸= init as it does not contain any read event.

As t′ is a (so ∪ wr)+-predecessor of tr(r), and transactions Sj
i are (so ∪ wr)-

maximal, t′ is not a Sj
i transaction; so it must be a tji transaction. However,

note that by construction of transactions tji , their only (so ∪ wr)-predecessor is
init. Thus, their only (so ∪ wr)-succesors can be transactions Sj′

i′ ; transactions
that do not have (so ∪ wr)-successors. In conclusion, if (t′, tr(r)) ∈ (so ∪ wr)+,
(t′, tr(r)) ∈ so ∪ wr, and therefore, (t′, r) ∈ (so ∪ wr); po∗. ⊓⊔

Lemma 21 states a characterization of all commit order cycles imposed by
the axiom RC that only relate the nine transactions associated to a clause in φ.

Lemma 21. Let h = (T, so,wr) a witness of hφ. For a fixed i, there is a pcoh-
cycle relating init, tji ,¬t

j
i and Sj

i , 1 ≤ j ≤ 3 in h if and only if for all 1 ≤ j ≤ 3,
(¬tji , S

j
i) ∈ wr

var(lji)
in h.

Proof. A graphical description of the different cases of this proof can be seen in
Figure B.3.

⇐=
Let us suppose that for every j, 1 ≤ j ≤ 3, (¬tji , S

j
i) ∈ wr

var(lji)i
. As

¬tji writes cji and (¬t(j+1) mod 3
i , Sj

i) ∈ wrcji
, by axiom RC we deduce that,

(¬tji ,¬t
(j+1) mod 3
i) ∈ pcoh. Therefore, there is a pcoh-cycle between transactions

¬t1i ,¬t2i and ¬t3i .
=⇒
First, note that so ∪ wr is acyclic, so any pcoh-cycle has to include at least

one pcoh \ (so ∪ wr)+-dependency. Hence, let t, t′ be distinct transactions such
that (t′, t) ∈ pcoh \ (so ∪ wr)+ is an edge belonging to such cycle. By axiom
Read Committed, this implies that there exists a read event r and a key x s.t.
(t, r) ∈ wrx and (t, r) ∈ (so∪wr); po∗. Note that in particular this means that t′
and t are two distinct (so ∪ wr)-succesors of tr(r).

We observe that tr(r) ̸= init as init does not contain any read event. More-
over, tr(r) ̸= tji ,¬t

j
i as those transactions have only one (so ∪ wr)-predecessor,

init. Hence, there exists j s.t. tr(r) = Sj
i . In this case, every ke written by tji

or ¬tji besides cji and var(lji)i is read by Sj
i from the INSERT event in its own

transaction. We distinguish between two cases:

– x = var(lji)i: The only transactions that write var(lji)i are tji , ¬tji , init

and transactions Sj′

i′ . However, transactions Sj′

i′ have only one (so ∪ wr)-
succesor, init in hφ. As ∀x ̸= var(lji)i,wrx

−1(Sj
i) = wrx

−1(Sj
i), one of

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 51

them, init must be either t or t′. However, t ̸= init as init does not delete
var(lji)i; so t = init. But in such case, (t′, t) ∈ so; which contradicts that
(t′, t) ∈ pcoh \ (so ∪ wr)+. This proves that this case is impossible.

– x = cji : In such case, as (¬tj+1 mod 3
i , Sj

i) ∈ wrcji
, t = ¬tj+1 mod 3

i . The only

transactions that writes cji and are (so ∪ wr)-predecessors of Sj
i are init, tji

and ¬tji . As (init, t) ∈ so; t ̸= init. Thus, any of the other two transactions
are candidates to be t′. Note that (t′, t) ∈ pcoh is part of a cycle; so let t′′

be a transaction s.t. (t′′, t′) ∈ pcoh.
If (t′′, t′) ∈ (so ∪ wr) would hold, as for every key x, wrx−1(t) = wrx

−1(t),
t′′ = init. As (t′, t) is part of a pcoh cycle and t ̸= init, there must exist
a transaction t′′′ ̸= t′′ = init s.t. (t′′′, t′′) ∈ pcoh is part of such cycle. Note
that (t′′′, init) ∈ pcoh \ (so ∪wr) by construction of hφ. Hence, there exists
a key y and a read event r′ s.t. (init, r′) ∈ wry and (t′′′, r′) ∈ (so∪wr); po∗.
By construction of hφ, if (init, r′) ∈ wry then tr(r′) must be tj

′

i for some
j′. But as we mentioned earlier, such transactions only have one (so ∪ wr)-
predecessor, init; so it is impossible that (t′′, t′) ∈ (so ∪ wr).
Hence, (t′′, t′) ∈ pcoh \ (so ∪ wr). Replicating the same argument as before
we can deduce that there exists a j′ s.t. (t′′, Sj′

i) ∈ wr
cj

′
i

, t′ = ¬tj
′+1 mod 3

i

and t′′ is either tj
′

i or ¬tj
′

i . However, as discussed before, t′ could only be ¬tji
or tji . Therefore, t′ = ¬tji and j = j′ + 1 mod 3.
Finally, as t′′ ̸= t, there must exist a transaction t′′′ s.t. (t′′′, t′′) ∈ pcoh. By
the same argument once more, there exists an index j′′ s.t. t′′ = ¬tj

′′+1 mod 3
i ,

(t′′′, Sj′′

i) ∈ wr
cj

′′
i

and t′′′ is either tj
′′

i or ¬tj
′′

i . Once more, as t′′ could only be

¬tj
′

i or tj
′

i , we deduce that j′ = j′′+1 mod 3 and t′′ = ¬tj
′

i . Note that in this
case j = j′′ + 2 mod 3. Thus, t = ¬tj+1 mod 3

i = ¬tj
′′

i = t′′′. In conclusion, if
such cycle exists it contain exactly the transactions ¬t1i ,¬t2i and ¬t3i and for
each of them, (¬tji , S

j
i) ∈ wr

var(lji)i
.

⊓⊔

Lemma 22 states that any pcoh-dependencies imposed by the axiom RC on
transactions t, t′ associated to diferent clauses in φ are related to valuation
choices of literals in φ.

Lemma 22. Let h = (T, so,wr) a witness of the history hφ. For every pair of
transactions t, t′ and indices i, j, if var(t) = var(t′), t′ deletes var(lji)i, t ̸=
¬tj+1 mod 3

i and (t′, t) ∈ pcoh \ (so ∪ wr)+ in h, then (t′, Sj
i) ∈ wr

var(lji)i
.

Proof. Let i, j be indices and t, t′ be distinct transactions such that t ̸=
¬tj+1 mod 3

i and (t′, t) ∈ pcoh \ (so ∪ wr)+. Hence, (t′, t) ∈ pcoh \ (so ∪ wr)+,
by axiom Read Committed, there must exist a key x and a read event r s.t.
(t, r) ∈ wrx, t′ writes x and (t′, r) ∈ (so ∪ wr); po∗. We characterize the possible
candidates of transactions t, t′, tr(r) and key x.

52 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

First, as tr(r) has two different (so ∪ wr)-predecessors, tr(r) ̸= init, tj
′

i′ ; for
any indices i′, j′. Hence, there must exist indices i′, j′ s.t. tr(r) = Sj′

i′ .
Next we deduce that t and t′ belongs to different clauses. As t′ deletes var(lji)i,

we deduce that t′ is either tji or ¬tji . Hence, as t ̸= ¬tj+1 mod 3
i , neither tji nor

¬tji are (so ∪ wr)-predecessors of Sj
i but both t and t′ are (so ∪ wr)-predecessors

of Sj
i , we then deduce that t and t′ belong to different clauses.
Finally, we deduce that i′ = i and (t′, Sj

i) ∈ wr
var(lji)i

. As x is written by

t and t′ and x ̸∈ A
j′

i′ ; either t or t′ are associated to the same clause as Sj′

i′ .
If t would be associated to clause Ci′ , then t should be either tj

′

i′ or ¬tj
′

i′ and
x = var(lj

′

i′)i′ . However, this contradicts that t′ writes var(lj
′

i′)i′ as t′ is either tji
or ¬tji . Hence, as t is not associated to clause Ci′ , i′ = i. As (t′, Sj

i) ̸∈ (so ∪ wr)

but (t′, Sj
i) ∈ (so∪wr) and wry = wry for any key y ̸= var(lji)i, we conclude that

(t′, Sj
i) ∈ wr

var(lji)i
. ⊓⊔

Lemma 23 states that pcoh does not contain tuples of transactions associated
to literals with equal variable and sign.

Lemma 23. Let h = (T, so,wr) a witness of the history hφ. For every pair
of transactions t, t′ and indices i, j, if sign(t) = sign(t′), var(t) = var(t′) =

var(lji), (t, S
j
i) ∈ wr

var(lji)i
and t′ ̸= ¬tj−1 mod 3

i then (t′, t) ̸∈ pcoh \ (so ∪ wr)+.

Proof. We reason by contradiction. Let us suppose that t, t′ are a pair of trans-
actions such that sign(t) = sign(t′), var(t) = var(t′) = var(lji), (t, Sj

i) ∈
wrvar(t)i , t

′ ̸= ¬tj−1 mod 3 and (t′, t) ∈ pcoh \ (so∪wr)+, for some indices i, j. As
(t, Sj

i) ∈ wr
var(lji)i

, t is either tji or ¬tji . Moreover, as (t′, t) ∈ pcoh \ (so ∪ wr)+,
by axiom Read Committed we deduce that there exists a key x and a read event
r s.t. (t′, r) ∈ (so ∪ wr); po∗, (t, r) ∈ wrx and t′ writes x.

We first prove that t′ and t are associated to different clauses. As (init, t) ∈
so, t′ ̸= init. Next, as (t′, r) ∈ (so ∪ wr); po∗ and transactions Sj′

i′ are so ∪ wr-
maximal, we deduce that there must exist a pair of indices i′, j′ s.t. t′ = tj

′

i′ or
¬tj

′

i′ . Moreover, as t′ ̸= ¬tj−1 mod 3
i , t is either tji or ¬tji . In addition, as in any

witness of hφ both tji and ¬tji cannot be (so∪wr)-predecessors of Sj
i , we deduce

that i′ ̸= i.
Finally we contradict the hypothesis proving that sign(t) ̸= sign(t′). If

i′ ̸= i, t ̸= init but t is a wr-predecessor of tr(r), there must exist indices i′′, j′′

s.t. tr(r) = Sj′′

i′′ . Hence, as x ∈ A
j′′

i′′ and it is written by t and t′, i′′ must be
either i′ or i. However, i′′ ̸= i as in that case, x = var(lji)i and t′ does not
write var(lji)i. Hence, i′′ = i′ ̸= i and x = var(lji)

sign(t′)
(i′,i) . However, as t writes x,

by construction of hφ, we must conclude that sign(t) ̸= sign(t′). Thus, as we
reached a contradiction, the lemma holds. ⊓⊔

Lemma 24. For every boolean formula φ, if φ is satisfiable then there is a
consistent witness h of hφ.

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 53

Proof. Let α : Vars(φ) → {0, 1} an assignment that satisfies φ. Let hα
φ =

(T, so,wr) the extension of hφ s.t. for every i, j, (tji , S
j
i) ∈ wr

var(lji)i
if

lji [α(var(l
j
i))/var(l

j
i)] = true and (¬tji , S

j
i) ∈ wr

var(lji)i
otherwise. Note that for

every two transactions t, t′ s.t. var(t) = var(t′), α(var(t)) = α(var(t′)). Hence,
if (t, Sj

i) ∈ wrvar(t)i and (t′, Sj′

i′) ∈ wrvar(t′)i′ then sign(t) = sign(t′). In addi-
tion, by construction of hφ, for every transaction Sj

i , the only variable x such
that wr−1

x (Sj
i) ↑ is x = var(lji). Thus, for every x ∈ Keys, wrx−1 is defined for any

read that does not read locally and therefore, hα
φ is a full history that extends

hφ.
Let us prove that hα

φ is consistent. As mentioned before, thanks to Theorem 2,
we can reduce the problem of checking if hα

φ is consistent to the problem of
checking if pcohα

φ
= saturate(hα

φ, (so ∪ wr)+) is acyclic.
We reason by contradiction, assuming there is a pcohα

φ
-cycle and reaching a

contradiction. Clearly so∪wr is acyclic as so∪wr is acyclic, transactions Sj
i are

(so ∪ wr)-maximal and wr \ wr only contains tuples (tji , S
j
i) or (¬tji , S

j
i). Thus,

any pcohα
φ
-cycle in hα

φ contains at least one edge (t′, t) ∈ pcohα
φ
\ (so ∪ wr)+; so

let be t, t′ such a pair of distinct transactions s.t. (t′, t) ∈ pcohα
φ
\ (so∪wr)+ and

(t′, t) is part of the pcohα
φ
-cycle.

First, we observe that by construction of hφ, transactions Sj
i are (so ∪ wr)-

maximal. Moreover, they also pcohα
φ
-maximal: by contradiction, if there was a

transaction uj
i s.t. (Sj

i , u
j
i) ∈ pcohα

φ
\ (so ∪ wr)+, by axiom Read Committed,

there would be a variable a read event r s.t. (Sj
i , r) ∈ (so ∪ wr); po∗; which is

impossible. We also observe that init is not only (so ∪ wr)-minimal but pcohα
φ
-

minimal. By the same argument, if there would be a transaction u ̸= init
s.t. (u, init) ∈ pcohα

φ
\ (so ∪ wr)+, by axiom Read Committed, there should be

a read event r and a key x s.t. (init, r) ∈ wrx and (u′, r) ∈ (so ∪ wr); po∗.
However, by construction of hφ, the only transactions that read a variable from
init are tji ; transactions with only one (so ∪ wr)-predecessor. This shows that
such transaction u does not exist. Altogether, the pcohα

φ
-cycle can only contain

pairs of transactions tji and ¬tji . In particular, as transactions tji have only one
(so ∪ wr)-predecessor, init, such pcohα

φ
-cycle is in pcohα

φ
\ (so ∪ wr)+.

Next, we note that, as every clause Ci is satisfied by α, there exists an index
j s.t. (tji , S

j
i) ∈ var(lji). By Lemma 21, we know there is no pcohα

φ
-cycle relating

the nine transactions associated with clause Ci and init. Therefore, a pcohα
φ
-

cycle has to involve at least two transactions from different clauses. Hence, we
can assume without loss of generality that t and t′ belong to the same clause.

As (t′, t) ∈ pcohα
φ
\ (so ∪ wr)+, there must exist a key x and a read event rx

s.t. t writes x, (t, rx) ∈ wrx and (t′, r) ∈ (so∪wr); po∗. By construction of hφ, the
only case when two transactions from different clauses write the same variable
is when var(t) = var(t′). In particular, as t and t′ belong to different clauses,
there must exist indices i, i′ s.t. x = var(t)

sign(t)
(i′,i) and tr(rx) = Sj

i . Hence, there
is only one candidate for transaction t′: tji if sign(tji) = sign(t′) = opsign(t)

54 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

and ¬tji otherwise. Therefore, as t′, tr(rx) belong to the same clause and t′ is a
(so ∪ wr)-predecessor of tr(rx), we conclude that (t′, Sj

i) ∈ wrvar(t′)i .
To reach a contradiction, we find a pair of distinct transactions t̃, t̂ in the

pcohα
φ
-cycle from different clauses but associated to the same variable. First, as

(t′, t) is part of the pcohα
φ
-cycle, there exists a pcohα

φ
-predecessor of t′, t′′ s.t.

(t′′, t′) ∈ pcohα
φ

is part of the pcohα
φ
-cycle. As we mentioned before, (t′′, t′) ∈

pcohα
φ
\ (so ∪ wr)+. Then, there must exist a key y and a read event ry s.t.

t′′ writes y, (t′, ry) ∈ wry and (t′′, r) ∈ (so ∪ wr); po∗. Two cases arise:

– t′′ is not associated to clause i: In this case, as both t′, t′′ write variable y,
by construction of hφ we observe that var(t′′) = var(t′). Thus, we denote
t̃ = t′′ and t̂ = t′.

– t′′ is associated to clause i: In this case, t′′ ̸= ¬t′ as no transaction in h
have both t′ and ¬t′ as (so ∪ wr)-predecessors. Hence, as no clause has two
literals referring to the same variable, var(t′) ̸= var(t′′). Thus, as t′′ and t′

have one common key, we deduce that t′′ = ¬tj−1 mod 3
i and y = cj−1 mod 3

i .
Thus, as (t′, r) ∈ wrcj−1 mod 3

i
, we can conclude that tr(ry) = Sj−1 mod 3

i and

(t′′, Sj−1 mod 3
i) ∈ wrvar(t′′)i . As t′′ ̸= t, there must exist a transaction t′′′ s.t.

(t′′′, t′′) ∈ pcohα
φ

belongs to the pcohα
φ
-cycle. Again, we observe two cases:

• t′′′ is not associated to clause i: In this case, by an analogous argument,
we observe that var(t′′′) = var(t′′). Thus, we denote t̃ = t′′′ and t̂ = t′′.

• t′′′ is associated to clause i: By the same reasoning as before, t′′′ =
¬tj−2 mod 3

i and (t′′′, Sj−2 mod 3
i) ∈ wrvar(t′′′)i . Moreover, as t′′′ ̸= t, there

must exist a transaction t′′′′ s.t. (t′′′′, t′′′) ∈ pcohα
φ

belongs to the pcohα
φ
-

cycle. Moreover, t′′′′ is not associated to clause i, as, once more, we would
deduce that t′′′′ = ¬tj−3 mod 3

i and that (t′′′′, Sj−3 mod 3
i) ∈ wrvar(t′′′′)i ;

which is impossible as by the construction of hα
φ is satisfied. Hence, t′′′′

and t′′′ belong to different clauses and var(t′′′′) = var(t′′′). We denote
in this case t̃ = t′′′′ and t̂ = t′′′.

Finally, we reach a contradiction with the help of Lemmas 23 and 22. On one
hand, by the choice of transactions t̂ and t̃, we know that var(t̂) = var(t̃) and
there exist indices ĩ, j̃ s.t. t̃ deletes var(lj̃

ĩ
). Moreover, t̂ ̸= ¬t̃j̃+1 mod 3

ĩ
as they

belong to different clauses. Thus, as (t̃, t̂) ∈ pcohα
φ
\ (so∪wr)+, by Lemma 22 we

deduce that (t̃, S j̃

ĩ
) ∈ wrvar(t̃)i . On the other hand, we also know that there exist

indices î, ĵ s.t. t̂ is associated to the literal lĵ
î

and (t̂, S ĵ

î
) ∈ wrvar(t)î . Hence, by

construction of hα
φ, as var(t̂) = var(t̃), (t̃, S j̃

ĩ
) ∈ wrvar(t̃)i and (t̂,ĵ

î
) ∈ wrvar(t̂)î ,

we deduce that sign(t̂) = sign(t̃). However, by Lemma 23, we deduce that
(t̃, t̂) ̸∈ pcohα

φ
\ (so ∪ wr)+. This contradicts that (t̃, t̂)hα

φ is part of the pcohα
φ
-

cycle. Thus, the initial hypothesis, that pcohα
φ

is cyclic, is false. In conclusion,
pcohα

φ
is acyclic, so hφ is consistent as hα

φ is a consistent witness of hφ.
⊓⊔

Lemma 25. For every boolean formula φ, if there is a consistent witness of h,
then φ is satisfiable.

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 55

Proof. Let h = (T, so,wr) be a consistent witness of hφ. Hence, by Theorem 2,
the relation pcoh = saturate(h, (so ∪ wr)+) is acyclic. We use this fact to
construct a satisfying assignment of φ. Let us call uj

i to the transaction s.t.
(uj

i , S
j
i) ∈ wr

var(lji)i
. Note that by construction of hφ, uj

i deletes var(lji)i, so uj
i

is either tji or ¬tji .
We first prove that for every pair of pairs of indices i, i′, j, j′, if var(uj

i) =

var(uj′

i′) then sign(uj
i) = sign(uj′

i′). By contradiction, let uj
i , u

j′

i′ be a pair of
transactions s.t. var(uj

i) = var(uj′

i′) and sign(uj
i) ̸= sign(uj′

i′). In such case,

opsign(uj
i) = sign(uj′

i′). Thus, both transactions write var(uj
i)

opsign(uj
i)

(i′,i) and

var(uj
i)

sign(uj
i)

(i,i′) . By axiom Read Committed, as (uj′

i′ , S
j
i) ∈ wr

var(uj
i)

opsign(u
j
i
)

(i′,i)

and

(uj
i , S

j
i) ∈ wr, we conclude that (uj

i , u
j′

i′) ∈ pcoh. By a symmetric argument using

var(uj
i)

sign(uj
i)

(i,i′) we deduce that (uj′

i′ , u
j
i) ∈ pcoh. However, this is impossible as

pcoh is acylclic; so we conclude that indeed sign(uj
i) = sign(uj′

i′).
Next, we construct a map that assign at each variable in φ a value 0 or 1.

Let αh : Vars(φ) → {0, 1} be the map that assigns for each variable var(lji)

the value 1 if sign(uj
i) = + and 0 if sign(uj

i) = −. Note that this map is well
defined as, by the previous paragraph, if two literals lji , l

j′

i′ share variable, then
their respective transactions uj

i , u
j′

i′ have the same sign.
Finally, we prove that φ is satisfied with this assignment. By construction

of αh, for every pair of indices i, j, lji [αh(var(l
j
i))/var(l

j
i)] is true if and only if

(tji , S
j
i) ∈ wr

var(lji)
. Moreover, as pcoh is acyclic, by Lemma 21, we know that

for each i there exists a j s.t. uj
i ̸= ¬tji . Hence, for this j, uj

i must be tji as uj
i is

either tji or ¬tji . Therefore, every clause is satisfied using αh as assignment; so φ
is satisfiable.

⊓⊔

56 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

B.4 Proof of Theorem 5.

Theorem 5. Let h be a client history whose isolation configuration is defined
using {SER, SI, PC, RA, RC}. Algorithm 3 returns true if and only if h is consistent.

The proof of Theorem 5 is a consequence of Lemmas 27 and 30.

Lemma 26. Let h = (T, so,wr) be a client history, P = (TP ,MP) be a consis-
tent prefix of h and t ∈ T \ TP . If (P ∪ {t}) ∈ seen then exploreConsistent-
Prefixes(h, P ∪ {t}) returns false.

Proof. If (P ∪ {t}) ∈ seen, then P ∪ {t} has been to seen added at line 6 of
Algorithm 4. To execute such instruction, the condition at line 4, exploreCon-
sistentPrefixes(h, P ∪ {t}) returns true, does not hold; which let us conclude
the result. ⊓⊔

Lemma 27. Let h = (T, so,wr) be a client history whose isolation configuration
is stronger than RC. If h is consistent, Algorithm 3 returns true.

Proof. Let h be a consistent history that satisfies the hypothesis of the Lemma.
As h is consistent, let h = (T, so,wr) be a witness of h and let ξ = (h, co) be a
consistent execution of h. We first reduce the problem to prove that Algorithm 4
returns true on a particular witness of h, a history ĥ s.t. h ⊆ ĥ ⊆ h.

First, let pco, Eh and Xh be defined as in Algorithm 3 at lines 2-4. As h is
consistent, for every read event r and a variable x s.t. wr−1

x (r) ↑, wr−1
x (r) ↓ and

WHERE(r)(valuewr(t
r
x, x)) = 0; where trx = wr−1

x (r).
On one hand, if Eh is empty, Xh is empty as well. In such case, we denote

ĥ = h. On the other hand, if Eh ̸= ∅, for every (r, x) ∈ Eh we know that the
transaction trx belongs to 0rx. Therefore, Xh ̸= ∅. Thus, let f be the map that
assigns for every pair (r, x) ∈ Eh the transaction trx; and let ĥ = (T, so, ŵr)

be the history s.t. ĥ = h
⊕

(r,x)∈Eh
wrx(f(r, x), r). We observe that the fact

that ĥ is a history and h witnesses ĥ’s consistency using co is immediate as
wr ⊆ ŵr ⊆ wr. Note that in both cases, the condition at line 6 does not
hold. Therefore, to prove that Algorithm 3 returns true it suffices to prove that
exploreConsistentPrefixes(ĥ, ∅) returns true.

We define an inductive sequence of prefixes based on co and show that they
represent recursive calls to Algorithm 4. As a base case, let P0 be the prefix with
only init as transaction. Assuming that for every j, 0 ≤ j ≤ i, Pi is defined,
let Pi+1 = Pi ∪ {ti}; where ti is the i-th transaction of T according to co. By
construction of co, pco ⊆ co. Hence, Property 1 immediately holds. Moreover,
as co witnesses h’s consistency, Property 2 also holds; so Pi ▷ti+1

Pi+1.
We conclude showing by induction on the number of transactions that are not

in the prefix that for every i, 0 ≤ i ≤ |T |, exploreConsistentPrefixes(ĥ, Pi)
returns true.

– Base case: The base case is i = |T |. In such case, P|T | contains all transac-
tions in T . Therefore, the condition at line 2 in Algorithm 4 holds and the
algorithm returns true.

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 57

– Inductive case: The inductive hypothesis guarantees that for every k, i ≤
k ≤ |T |, exploreConsistentPrefixes(ĥ, Pi) returns true and we show
that exploreConsistentPrefixes(ĥ, Pi−1) also returns true. By defini-
tion of Pi, TPi = TPi−1 ∪ {ti}. In particular, |Pi| ̸= |T | and Pi−1 ▷ti+1 Pi.
In addition, by induction hypothesis, we know that exploreConsistent-
Prefixes(ĥ, Pi) returns true. Hence, by Lemma 26, Pi ̸∈ seen. Altogether,
we deduce that exploreConsistentPrefixes(ĥ, Pi−1) returns true.

⊓⊔

Lemma 28. Let ĥ = (T, so, ŵr) be a client history and P = (TP ,MP) be a
consistent prefix. If exploreConsistentPrefixes(ĥ, P) returns true, there
exist distinct transactions ti ∈ T TP and a collection of consistent prefixes
Pi = (TP ,MP) s.t. Pi = Pi−1 ∪ {ti}, Pi−1 ▷ti Pi and exploreConsistent-
Prefixes(ĥ, Pi) returns true; where |TP | < i ≤ |T | and P|TP | = P .

Proof. Let ĥ be a client history and P = (TP ,MP) be a consistent prefix s.t.
exploreConsistentPrefixes(ĥ, P) returns true. We prove the result by in-
duction on the number of transactions not present in TP . The base case, when
|TP | = |T |, immediately holds as T \ TP = ∅. Let us assume that the inductive
hypothesis holds for any prefix containing k transactions and let us show that it
also holds for every consistent prefix with k−1 transactions. Let us thus assume
that |TP | = k−1. As exploreConsistentPrefixes(ĥ, P) returns true, it must
reach line 5 in Algorithm 4. Hence, there must exist a transaction tk ∈ T \TP s.t.
P ▷tk (P∪{tk}) and exploreConsistentPrefixes(ĥ, P∪{tk}) returns true. By
induction hypothesis on P ∪ {tk} = (Tk,Mk), there exist a distinct transactions
ti ∈ T \Tk and a collection consistent prefixes Pi s.t. Pi = Pi−1∪{ti}, Pi−1 ▷ti Pi

and exploreConsistentPrefixes(ĥ, Pi) returns true; where k < i ≤ |T | and
Pk = P ∪ {tk}. Thus, the inductive step holds thanks to prefix Pk. ⊓⊔

Lemma 29. Let h = (T, so,wr) be a client history and let pco be the relation
defined as at line 2 in Algorithm 4. If checkConsistency(h) returns true,
there exists an extension ĥ = (T, so, ŵr) of h s.t. for every read event r, variable
x and transaction t, (1) if (t, r) ∈ ŵrx \ wrx then t ∈ 0rx(pco), (2) if ŵr−1

x (r) ↑
then 1rx(pco) = ∅, and (3) exploreConsistentPrefixes(ĥ, ∅) returns true.

Proof. Let h = (T, so,wr) be a client history s.t. checkConsistency(h) returns
true and let pco, Eh, Xh be the objects described in lines 2-4 in Algorithm 3. If
there exists a pair (r, x) ∈ Eh for which 0rx(pco) = ∅, checkConsistency(h) re-
turns false. Hence, Eh is empty if and only if Xh is empty. If Eh = ∅, Algorithm 3
executes line 7. Thus, taking ĥ = h, conditions (1), (2) and (3) trivially hold.
Otherwise, Algorithm 3 executes line 8. Once again, as exploreConsistent-
Prefixes(h, ∅) returns true, there must exists f ∈ Xh s.t. exploreConsis-
tentPrefixes(ĥ, ∅) returns true; where ĥ =

⊕
(r,x)∈Eh

wrx(f(r, x), r). Thanks
to the definition of f and ĥ conditions (1), (2) and (3) are satisfied. ⊓⊔

58 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

Lemma 30. Let h = (T, so,wr) be a client history whose isolation configuration
is composed of {SER, SI, PC, RC} isolation levels. If Algorithm 4 returns true, h is
consistent.

Proof. Let h = (T, so,wr) be a client history s.t. checkConsistency(h) re-
turns true and let pco, Eh and Xh be defined as at lines 2-4 in Algorithm 3.
By Lemma 29, there exists an extension of h ĥ = (T, so, ŵr) s.t. for every read

event r, variable x and transaction t, (1) if ŵr−1
x (r) ↑ then 1rx(pco) = ∅, (2) if

(t, r) ∈ ŵrx \wrx then t ∈ 0rx(pco) and (3) exploreConsistentPrefixes(ĥ, ∅)
returns true. By Lemma 28 applied on ĥ and ∅, there exist distinct transac-
tions ti ∈ T and a collection of prefixes of h, Pi = (Ti,Mi), s.t. Pi = Pi−1 ∪{ti},
Pi−1▷tiPi and exploreConsistentPrefixes(ĥ, Pi) returns true; where P0 = ∅
and 0 < i ≤ |T |. Let co be the total order based on the aforementioned trans-
actions ti, i.e. co = {(ti, tj) | i < j}. We construct a full history that extends ĥ
employing co and taking into account the isolation level of each transaction.

For every read event r, key x and visibility relation v ∈ vis(iso(h)(tr(r))), let
tv, t

r
x be the transactions defined as follows:

txv = max
co

{t′ ∈ T | t′ writes x ∧ v(co)(t′, r, x)}

trx = max
co

{txv | v ∈ vis(iso(h)(tr(r)))} (10)

Note that if v is a visibility relation associated to an axiom from SER, SI, PC, RA
and RC isolation levels, transactions txv and trx are well-defined as v(init, r, x)
holds. Thus, let wrx = ŵrx∪{(trx, r) | ŵr

−1
x (r) ↑} and wr =

⋃
x∈Keys wrx. As wr−1

x

is a total function and wr−1
x (r) writes x we can conclude that h = (T, so,wr) is a

full history.
We prove that h is also a witness of h. For that, we show that for every read

event r, every key x and every transaction t, if (t, r) ∈ wrx\wrx, t ∈ 0rx(pco). Two
cases arise: (t, r) ∈ ŵrx\wrx and (t, r) ∈ wrx\ŵrx. The first case is quite straight-
forward, as if (t, r) ∈ ŵrx \ wrx, by Property (1) of Lemma 29, t ∈ 0rx(pco). The
second case, (t, r) ∈ wrx \ ŵrx, is slightly more subtle. First, for every isolation
level considered, if (t, r) ∈ wrx then (t, tr(r)) ∈ pco. Next, as checkConsis-
tency(h) returns true, the condition at line 5 does not hold. Hence, as pco
is acyclic, we deduce that (tr(r), t) ̸∈ pco. In addition, as (t, r) ∈ wrx \ ŵrx,
ŵr−1

x (r) ↑. By Property (2) of Lemma 29 employed during ĥ’s construction, we
deduce that 1rx(pco) = ∅. In conclusion, as (tr(r), t) ̸∈ pco and 1rx(pco) = ∅, we
conclude that t ∈ 0rx(pco).

Finally, we prove that co witnesses that h is consistent. Let r be a read

event, x be a key and t1, t2 be transactions s.t. (t1, r) ∈ wrx and t2 writes x. We
prove that if there exists v ∈ vis(iso(h)(tr(r))) s.t. v(co)(t2, r, x) holds in h then
(t2, t1) ∈ co; which by Definition 6, we know it implies that h is consistent. Note
that if (t1, r) ∈ wr \ ŵr, by definition of trx the statement immediately holds; so
we can assume without loss of generality that (t1, r) ∈ ŵrx.

First, we note that proving that whenever v(co)(t2, r, x) holds in h, then
(t2, t1) ∈ co is equivalent to prove that whenever v(co)(t2, r, x) holds in h, then
t1 ̸∈ Ti−1; where i is the index of the transaction in T s.t. t2 = ti.

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 59

For every i, 1 ≤ i ≤ |T | Pi−1 ▷ti Pi, so ∪ ŵr ⊆ co. Thus, by Definition 6,
it suffices to show that for every read event r, Ciso(h)(tr(r))(pco)(r) holds. For
that, let ˆpco = FIX(λR : saturate(ĥ,R))(so∪ ŵr)+ be the partial commit order
implied by ĥ.

As iso(h) is composed of {SER, SI, PC, RA, RC} isolation levels and Pi−1 ▷t2 Pi,
by Property 2 of Definition 10, it suffices to prove that whenever v(co)(t2, r, x),
if v ̸= Conflict then v(ˆpcoPi

t2)(t, r, x) holds in ĥ, while if v = Conflict, that there
exists t′ ∈ Ti−1 s.t. v(ˆpcoPi

t2)(t
′, r, x) holds in ĥ; where ˆpcoPi

t2 is obtained by
applying Table 1 on ˆpco. We analyze five different cases:

– iso(h)(tr(r)) = SER: In this case, Serializability(co)(t2, r, x) holds in h if and
only if (t2, tr(r)) ∈ co. As ˆpcoPi

t2 totally orders t2 and every other trans-
action in T and ˆpcoPi

t2 ⊆ co, we deduce that (t2, tr(r)) ∈ ˆpcoPi
t2 . Hence,

Serializability(ˆpcoPi
t2)(t2, r, x) holds in ĥ.

– iso(h)(tr(r)) = SI: Two disjoint sub-cases arise:
• Conflict(co)(t2, r, x) holds in h: This happens if and only if there exists a

transaction t3 and a key y ∈ Keys s.t. t3 writes y, tr(r) writes y, (t2, t3) ∈
co∗ and (t3, tr(r)) ∈ co. Let j be the index s.t. t3 = tj . Then, as ˆpco

Pj

t3

totally orders t3 and every other transaction and ˆpco
Pj

t3 ⊆ co, (t2, t3) ∈
(ˆpco

Pj

t3)
∗ and (t3, tr(r)) ∈ ˆpco

Pj

t3 . Thus, Conflict(ˆpco
Pj

t3)(t2, r, x) holds in
ĥ.

• Prefix(co)(t2, r, x) holds in h but Conflict(co)(t2, r, x) does not: We ob-
serve that Prefix(co)(t2, r, x) holds in h if there exists a transaction t3
s.t. (t2, t3) ∈ co∗ and (t3, tr(r)) ∈ so ∪ wr. If (t3, tr(r)) ∈ wr \ (so ∪ ŵr),
by Equation (10) there exist y ∈ Keys and v ∈ vis(SI) s.t. v(co)(t3, r, y)
holds in ĥ. Note that v ̸= Conflict as otherwise Conflict(co)(t2, r, x) would
hold in h. Hence, v = Prefix and by transitivity of co, we conclude
that Prefix(co)(t2, r, x) holds in ĥ. As ˆpcoPi

t2 totally orders t2 with re-
spect every other transaction in t2 and ˆpcoPi

t2 ⊆ co, we conclude that
Prefix(ˆpcoPi

t2)(t2, r, x) holds in ĥ.
– iso(h)(tr(r)) = PC: In this case, Prefix(co)(t2, r, x) holds in h if and only if

there exists a transaction t3 s.t. (t2, t3) ∈ co∗ and (t3, tr(r)) ∈ so ∪ wr.
If (t3, tr(r)) ∈ wr \ (so ∪ ŵr), by Equation (10) there exist y ∈ Keys and
v ∈ vis(SI) s.t. v(co)(t3, r, y) holds in ĥ. Hence, by transitivity of co, we
conclude that Prefix(co)(t2, r, x) holds in ĥ. As ˆpcoPi

t2 totally orders t2 with
respect every other transaction in t2 and ˆpcoPi

t2 ⊆ co, we conclude that
Prefix(ˆpcoPi

t2)(t2, r, x) holds in ĥ.
– iso(h)(tr(r)) = RA: In this case, Read Atomic(co)(t2, r, x) holds in h if and

only if (t2, tr(r)) ∈ so∪wr. We observe that by Equation (10), if (t2, tr(r)) ∈
wr\(so∪ŵr), then t2 = trx and Read Atomic(ˆpcoPi

t2)(t2, r, x) holds in ĥ. Hence,
(t2, tr(r)) ∈ so ∪ ŵr; which is a contradiction. Thus, as (t2, tr(r)) ∈ so ∪ ŵr,
Read Atomic(ˆpcoPi

t2)(t2, r, x) holds in ĥ.

60 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

– iso(h)(tr(r)) = RC: Similarly to the previous case, we observe that the for-
mula Read Committed(co)(t2, r, x) holds in h iff (t2, tr(r)) ∈ (so ∪ wr); po∗.
We observe that by Equation (10), if (t2, tr(r)) ∈ wr \ (so ∪ ŵr); po∗, then
t2 = trx and Read Committed(ˆpcoPi

t2)(t2, r, x) holds in ĥ. Therefore, (t2, r) ∈
so ∪ ŵr; po∗; which is a contradiction. Thus, as (t2, tr(r)) ∈ so ∪ ŵr; po∗,
Read Committed(ˆpcoPi

t2)(t2, r, x) holds in ĥ.

⊓⊔

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 61

Algorithm 5 Checking if P ▷t (P ∪ {t}) holds in h

1: function isConsistentExtension(h = (T, so,wr), P = (TP ,MP), t)
▷ We assume t ̸∈ TP .

2: let pco = FIX(λR : saturate(h,R))(so ∪ wr)+

3: if ∃t′ ∈ T \ TP s.t. (t′, t) ∈ pco then ▷ Condition 1
4: return false
5: for all r ∈ reads(h) s.t. tr(r) ̸∈ TP ∪ {t}, v ∈ vis(iso(h))(tr(r)) do
6: if vpPv (t, r) does not hold in h then ▷ Condition 2
7: return false
8: return true

B.5 Proof of Theorem 6

Theorem 6. For every client history h whose isolation configuration is
composed of {SER, SI, PC, RA, RC} isolation levels, Algorithm 3 runs in
O(|h|#conf(h)+width(h)+9 ·width(h)|Keys|). Moreover, if no transaction employs SI
isolation level, Algorithm 3 runs in O(|h|#conf(h)+width(h)+8).

The proof of Theorem 6 is split in two Lemmas: Lemma 34 analyzes the com-
plexity of Algorithm 4 while Lemma 35 relies on the previous result to conclude
the complexity of Algorithm 3.

Lemma 31. Let h = (T, so,wr) be a history, P = (TP ,MP) be a consistent
prefix of h and t ∈ T \ TP be a transaction. Algorithm 5 returns true if and only
if P ▷t (P ∪ {t}).

Proof. Clearly, P ∪ {t} is an extension of P .isConsistentExtension(h, P, t)
returns true if and only if conditions at lines 3 and lines 5 in Algorithm 5 hold.
This is equivalent to respectively satisfy Properties 1 and 2 of Definition 10. By
Definition 10, this is equivalent to P ▷t (P ∪ {t}). ⊓⊔

Lemma 32. Let h = (T, so,wr) be a history and k ∈ N be a bound in iso(h).
For any consistent prefix P = (TP ,MP) of h and any transaction t ∈ T \ TP ,
Algorithm 5 runs in O(|h|k+3).

Proof. We analyze the cost of Algorithm 5. First, as pco ⊆ T × T , by Lemma 7,
line 2 runs in O(|h|2 · |h|k+1). Next, the condition at line 3 can be checked
in O(|T |). Finally, the condition at line 5 can be checked in O(|T | · k · U);
where U is an upper-bound on the complexity of checking vpPv (t, r). With the
aid of Lemma 6, we deduce that U ∈ O(|h|k−2). Altogether, we conclude that
Algorithm 5 runs in O(|h|k+3). ⊓⊔

Lemma 33. Let h = (T, so,wr) be a client history. If iso(h) is composed of
{SER, SI, PC, RA, RC} isolation levels, then 5 is a bound of iso(h). Moreover, if no
transaction has SI as isolation, 4 is a bound on iso(h).

Proof. Let h be a history as described in the hypothesis. First, all isolation levels
in the set {SER, SI, PC, RA, RC} employ at most two axioms. Moreover, every axiom

62 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

described employs at most 5 quantifiers: three universal quantifiers and at most
two existential quantifiers. Hence, 5 is a bound on iso(h). Note that Conflict is the
only axiom employing two existential quantifiers; so if no transaction employs
SI, 4 bounds iso(h). ⊓⊔

Lemma 34. Let h = (T, so,wr) be a client history whose isolation configura-
tion is composed of {SER, SI, PC, RA, RC} isolation levels. Algorithm 4 runs in
O(|h|width(h)+9 · width(h)|Keys|). Moreover, if no transaction has SI as isolation
level, Algorithm 4 runs in O(|h|width(h)+8).

Proof. For proving the result, we focus only on prefixes that are computable by
Algorithm 4. Let h = (T, so,wr) be a history. A prefix P of h is computable if
either P = ∅ or there exist a transaction t and a prefix P ′ s.t. P = P ′ ∪ {t} and
P ′ is computable.

Intuitively, computable prefixes represent recursive calls of Algorithm 4 when
employed by Algorithm 3. Indeed, Algorithm 3 only employs Algorithm 4 at
lines 7 and 11. In both cases, P ′ = ∅ is the initial call to Algorithm 4. Moreover,
the condition at line 3 justifies the recursive definition.

On one hand, we observe that any call to Algorithm 4 is associated to a
computable prefix and on the other hand, Algorithm 4 does not explore two
equivalent computable prefix thanks to the global variable seen (line 4). There-
fore, Algorithm 4 runs in O(N ·U); where N is the number of distinct equivalence
class of prefixes of h and U is an upper-bound on the running time of Algorithm 4
on a fixed prefix without doing any recursive call.

We first compute an upper-bound of N . For any computable prefix P , we can
deduce by induction on the length of P that there exists transactions ti ∈ TP

and a collection of computable prefixes of h, Pi = (Ti,Mi) and transactions ti
s.t. P|TP | = P , Pi = Pi−1 ∪ {ti} and Pi−1 ▷ti Pi; where P0 = ∅ and 0 < i ≤ |TP |.
The base case is immediate as |TP | = 0 implies that T ′ = ∅ while the inductive
step can be simply obtained by applying the recursive definition of computable
prefix.

Let P = (TP ,MP) be in what follows a computable prefix of h. We observe
that both TP and MP are determined by its so-maximal transactions. Let t, t′ ∈
T be a pair of transactions s.t. (t, t′) ∈ so and t′ ∈ TP . As t′ ∈ TP there must
exist an index i, 1 ≤ i ≤ |TP | s.t. Pi = Pi−1 ∪ {t′}. Therefore, as Pi−1 ▷t′ Pi−1,
t ∈ Ti−1 ⊆ TP . In particular, if t′ is a so-maximal transaction in TP , all its
so-predecessors are also contained in TP ; and hence, TP can be characterized by
its so-maximal transactions. Moreover, by induction on the length of P we can
prove that for every key x, MP (x) is a so-maximal transaction: the base case,
|TP | = 0 is immediate while the inductive step is obtained by the definition of
P ∪ {t′′}, t′′ ̸∈ TP . Hence, the number of computable prefixes of a history is in
O(|T |width(h) ·width(h)|Keys|). Thus, N ∈ O(|h|width(h) ·width(h)|Keys|). Moreover,
if no transaction employs SI as isolation level, prefixes with identical transaction
set coincide. Hence, in such case, N ∈ O(|h|width(h)).

We conclude the proof bounding U . If |TP | = |T |, Algorithm 4 runs in O(1);
so we can assume without loss of generality that |TP | ̸= |T |. In such case, U

On the Complexity of Checking Mixed Isolation Levels for SQL Transactions 63

represent the cost of executing lines 3-7 in Algorithm 4. Thus, U ∈ O((|T | −
|TP |) · V); where V is the cost of checking P ▷t (P ∪ {t}) for a transaction
t ∈ T \TP . By Lemma 31, Algorithm 5 can check if P ▷t (P ∪{t}) and thanks to
Lemma 32, Algorithm 5 runs in O(|h|k+3); where k is a bound on iso(h). Thus,
U ∈ O(|h|k+4).

Thanks to Lemma 33, we conclude that Algorithm 4 runs in O(|h|width(h)+9 ·
width(h)|Keys|) and, if no transaction employs SI as isolation level, then it runs
in O(|h|width(h)+8). ⊓⊔

Lemma 35. Let h = (T, so,wr) be a client history whose isolation configura-
tion is composed of {SER, SI, PC, RA, RC} isolation levels. Algorithm 3 runs in
O(|h|#conf(h)+width(h)+9 · width(h)|Keys|). Moreover, if no transaction has SI as
isolation level, Algorithm 3 runs in O(|h|#conf(h)+width(h)+8).

Proof. Let h = (T, so,wr) be a history satisfying the hypothesis of the Lemma.
We decompose our analysis in two sections, the first one where we analyze the
complexity of executing lines 2-4 and second one where we analyze the com-
plexity of executing lines 5-12. We observe that by Lemma 33, 5 is a bound on
iso(h).

In line 2, Algorithm 3 computes pco. On one hand, computing (so ∪ wr)+

is in O(|T |3). On the other hand, as pco ⊆ T × T and by Lemma 7, execut-
ing saturate(h, (so ∪ wr)+) is in O(|h|6); we deduce that computing pco after
compute (so ∪ wr)+ is in O(|h|8).

In line 3, Algorithm 3 computes Eh. As wr is acyclic, for a given key x and
transaction t, valuewr(t, x) ∈ O(|T |). Therefore, computing 1rx(pco) is in O(|T |)
as we assume that for every r ∈ Rows, computing WHERE(r)(v) ∈ O(1). Thus,
computing Eh is in O(|h|3).

Finally, in line 4, Algorithm 3 computes Xh. Note that Xh can be seen is
a×(r,x)∈Eh

0rx(pco). Computing each 0rx(pco) set is in O(|T |); so computing all
of them is in O(|T | · |Eh|). As each set 0rx(pco) is a subset of T , applying the
cartesian-product definition of Xh we can compute Xh in O(|T ||Eh|). Therefore,
as |Eh| = #conf(h), we conclude that computing Xh is in O(|h| ·#conf(h) +
|h|#conf(h)) and that |Xh| ∈ O(|h|#conf(h)). Altogether, as #conf(h) ≤ |T |2, we
deduce that computing lines 2-4 of Algorithm 3 is in O(|h|8 + |h|#conf(h)).

Next, we analyze the complexity of executing lines 5-12. Four disjoint cases
arise, one per boolean condition in Algorithm 3. The first one, checking if pco is
cyclic (line 5), is in O(|h|). The second one, checking if ∃(r, x) ∈ Eh s.t. 0rx(pco) =
∅ (line 6), clearly runs in O(#conf(h)·|h|). The third one, checking if Eh = ∅ and
executing Algorithm 4 is in O(#conf(h) + |h|width(h)+9 · width(h)|Keys|) thanks
to Lemma 34.

Finally we analyze the last case, computing an extension of h for each map-
ping in Xh and then executing Algorithm 3 (lines 8-12). On one hand, computing
each history is in O(|h|3) as we require to define both so ⊆ T × T and wr ⊆
Keys×T×T . On the other hand, as the size of each extension of h is in O(|h|), exe-
cuting Algorithm 3 for a given history is in O(|Xh| · |h|width(h)+9 ·width(h)|Keys|)
thanks again to Lemma 34. Altogether, for each mapping f ∈ Xh, executing

64 Ahmed Bouajjani, Constantin Enea, Enrique Román-Calvo

lines 10-11 is in O(|h|width(h)+9 ·width(h)|Keys|). As |Xh| ∈ O(|h|#conf(h)), we con-
clude that executing this last case is in O(|h|#conf(h)+width(h)+9 · width(h)|Keys|).

We then conclude that Algorithm 3 runs in O(|h|#conf(h)+width(h)+9 ·
width(h)|Keys|). Moreover, if no transaction employs SI as isolation level,
Lemma 34 allows us to deduce that in such case Algorithm 3 runs in
O(|h|#conf(h)+width(h)+9). ⊓⊔

	On the Complexity of Checking Mixed Isolation Levels for SQL Transactions

